Stewart Section 2.5

Gene Quinn

Limits Involving Infinity

Definition: The notation

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a on either side (but not equal to a).

Limits Involving Infinity

Definition: The notation

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a on either side (but not equal to a).

An equivalent notation used to describe this situation is

$$
f(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow a
$$

Limits Involving Infinity

Definition: The notation

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a on either side (but not equal to a).

An equivalent notation used to describe this situation is

$$
f(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow a
$$

You will find these phrases used as well, which mean the same thing: $f(x)$ becomes infinite as x approaches a.
$f(x)$ increases without bound as x approaches a.

Vertical Asymptote

Definition: The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{lll}
\lim _{x \rightarrow a}=\infty & \lim _{x \rightarrow a^{+}}=\infty & \lim _{x \rightarrow a^{-}}=\infty \\
\lim _{x \rightarrow a}=-\infty & \lim _{x \rightarrow a^{+}}=-\infty & \lim _{x \rightarrow a^{-}}=-\infty
\end{array}
$$

Vertical Asymptote

Definition: The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{lll}
\lim _{x \rightarrow a}=\infty & \lim _{x \rightarrow a^{+}}=\infty & \lim _{x \rightarrow a^{-}}=\infty \\
\lim _{x \rightarrow a}=-\infty & \lim _{x \rightarrow a^{+}}=-\infty & \lim _{x \rightarrow a^{-}}=-\infty
\end{array}
$$

Example: The natural logarithm function has a vertical asymptote at $x=0$ because

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty
$$

Vertical Asymptote

Example: The function

$$
y=\frac{1}{x}
$$

has a vertical asymptote at $x=0$ because

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} f(x)=-\infty
$$

Vertical Asymptote

Example: The function

$$
y=\frac{1}{x}
$$

has a vertical asymptote at $x=0$ because

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{-}} f(x)=-\infty
$$

Example: The function

$$
f(x)=\frac{3 x+4}{x-1}
$$

has a vertical asymptote at $x=1$ because

$$
\lim _{x \rightarrow 1^{+}} f(x)=\infty \quad \text { and } \lim _{x \rightarrow 1^{-}} f(x)=-\infty
$$

Vertical Asymptote

Example: The function

$$
y=\frac{1}{(x+1)^{2}}
$$

has a vertical asymptote at $x=-1$ because

$$
\lim _{x \rightarrow-1^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{-}} f(x)=\infty
$$

Vertical Asymptote

Example: The function

$$
y=\frac{1}{(x+1)^{2}}
$$

has a vertical asymptote at $x=-1$ because

$$
\lim _{x \rightarrow-1^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow-1^{-}} f(x)=\infty
$$

Example: The function

$$
f(x)=\tan (x)
$$

has a vertical asymptote at $x=\pi / 2$ because

$$
\lim _{x \rightarrow \pi / 2^{+}} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow \pi / 2^{-}} f(x)=-\infty
$$

Limits at Infinity

Definition: Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty}=L
$$

means that the value of L can be made as close to L as we like by making x sufficiently large.

Limits at Infinity

Definition: Let f be a function defined on some interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty}=L
$$

means that the value of L can be made as close to L as we like by making x sufficiently large.

An equivalent notation used to describe this situation is

$$
f(x) \rightarrow L \quad \text { as } \quad x \rightarrow \infty
$$

Horizontal Asymptote

Definition: The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either:

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

In either case $f(x)$ can be made arbitrarily close to L by taking x sufficiently large in the positive or negative direction.

Horizontal Asymptote

Definition: The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either:

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

In either case $f(x)$ can be made arbitrarily close to L by taking x sufficiently large in the positive or negative direction.

Example: The function

$$
f(x)=\frac{1}{x}
$$

has a horizontal asymptote at $y=0$ because

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

Two Special Limits

If n is a positive integer, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0
$$

Two Special Limits

If n is a positive integer, then

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0
$$

Also

$$
\lim _{x \rightarrow-\infty} e^{x}=0
$$

Infinite Limits at Infinity

The notation

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

is used to indicate that the value of $f(x)$ becomes large as x becomes large.
A similar meaning is attached to the symbols:

$$
\lim _{x \rightarrow-\infty} f(x)=\infty, \quad \lim _{x \rightarrow \infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

Infinite Limits at Infinity

The notation

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

is used to indicate that the value of $f(x)$ becomes large as x becomes large.
A similar meaning is attached to the symbols:

$$
\lim _{x \rightarrow-\infty} f(x)=\infty, \quad \lim _{x \rightarrow \infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=-\infty
$$

Example: The base-e exponential becomes large as x becomes large:

$$
\lim _{x \rightarrow \infty} e^{x}=\infty
$$

Limits Involving Infinity

Note that ∞ and $-\infty$ are not real numbers.

Limits Involving Infinity

Note that ∞ and $-\infty$ are not real numbers.
It is sometimes useful to consider a set called the extended real numbers which is defined to be

$$
\mathcal{R} \cup \infty \cup-\infty
$$

Certain algebraic properties can be established for the extended real numbers.

$$
\begin{aligned}
& \infty+\infty=\infty \\
& -\infty-\infty=-\infty \\
& \infty+(-\infty) \text { is undefined } \\
& \infty \cdot(\pm \infty)= \pm \infty \\
& \frac{ \pm \infty}{ \pm \infty} \text { is undefined }
\end{aligned}
$$

