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The five limit laws

In the following slides, we assume that c is a constant, and that

lim f(x) and lim g(x)

r—a r—a

both exist.
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The five limit laws

lim [f(x) + g(x)] = lim f(x)+ lim g(x)

r—a r—a r—a

Which can be stated as “the limit of the sum is the sum of the limits”.
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The five limit laws

2.
lim [f(z) — g(x)] = lim f(z) — lim g(x)

r—a r—a r—a

Which can be stated as “the limit of the difference is the difference of
the limits”.
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The five limit laws

3.

lim [ef ()] = e lim f ()

Which can be stated as “the limit of a constant times a function is the
constant times the limit of the function”.
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The five limit laws

4.
lim | f(z) - g(2)] = lim f(z) - lim g(z)

r—a r—a r—a

Which can be stated as “the limit of the product is the product of the
limits”.
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The five limit laws

5.

i 1) _ meme f(@) g(z) £ 0

oo g(@) | Tmg_ag(@) | o

Which can be stated as “the limit of the quotient is the quotient of the
limits (provided the limit of the denominator is not zero”.
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Additional limit laws

6. By repeated application of the limit law for products, we obtain

lim [f(z)]" = | lim f(x)}n

r—a [m—m
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Additional limit laws

7. This special limit is used frequently:

limec = c
xr—a
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Additional limit laws

8. This special limit is also used frequently:

lim x = a
xr—a
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Additional limit laws

9.

lim 2" = a
xr—a
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Additional limit laws

10.
lim /z = Va

r—a

(with the assumption, in the case that »n is even, that a > 0.
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Additional limit laws

11.

lim {/f(z) = ¥/ f(a)

r—a

(with the assumption, in the case that n is even, that f(a) > 0).

Stewart Section 2.3 — p.13/?"



Direct Substitution Property

Definition:

A function f with the property that

lim f(z) = f(a)
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Direct Substitution Property - Polynomials

Theorem:

For any polynomial function

P(z) = apz" + 12" 1+ -+ a1z + ag

the direct substitution property holds for any real number a:
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Direct Substitution Property - Rational Functions

Theorem:

For any rational function

flz) = ggz; where P and () are polynomials
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Direct Substitution Property

Polynomials and rational functions are not the only functions that have
the direct substitution property.

In Section 2.4, we will see that many other functions have this
Important property.
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Direct Substitution Property
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In Section 2.4, we will see that many other functions have this
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In fact, we will use the direct substitution property to define a class of
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Direct Substitution Property

Polynomials and rational functions are not the only functions that have
the direct substitution property.

In Section 2.4, we will see that many other functions have this
Important property.

In fact, we will use the direct substitution property to define a class of
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A Limit Theorem

Theorem:

If f and ¢ are two functions and
f(x) =g(z) whenever z #a

for some number a, then
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A Limit Theorem
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A Limit Theorem

Theorem:

If f and ¢ are two functions and
f(x) =g(z) whenever z #a

for some number a, then
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Example

Example:

The functions

and
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Example

Example:

The functions

and
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A Theorem on Inequalities

Theorem

|f
f(z) < g(x)

when zx is a value near a (with the possible exception of a itself), and
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A Theorem on Inequalities

Theorem

|f
f(z) < g(x)

when zx is a value near a (with the possible exception of a itself), and
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The Squeeze Theorem

Theorem

If
flz) < g(x) < h(z)

when x is a value near a (except possibly at « itself), and
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The Squeeze Theorem

The squeeze theorem is useful in the following situation:

® | want to find lim,_,, h(x) for some function h
® | know of a function g such that h(x) < g(x) when z is near a
® | know of a function f such that f(z) < h(x) when z is near a
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The Squeeze Theorem

The squeeze theorem is useful in the following situation:

® | want to find lim,_,, h(x) for some function h
® | know of a function g such that h(x) < g(x) when z is near a
® | know of a function f such that f(z) < h(x) when z is near a
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Sample Problem 1

Given that

evaluate
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Sample Problem 1

Given that

evaluate
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Sample Problem 1

By the sum rule,

lim, o (f(z) — 3g(x)) _ limy_q f(x) —limg;_4 3g(x)
limg—a(g(z) + f(z))  limgqg(x) + limg—q f(2)
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Sample Problem 1

By the sum rule,

lim, o (f(z) — 3g(x)) _ limy_q f(x) —limg;_4 3g(x)
lim, 4(g(x) + f(x)) lim, ., g(x) + lim, ., f(x)
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Sample Problem 2

Evaluate
lim (22* + x — 5)

r—4
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Sample Problem 2

Evaluate
lim (22* + x — 5)

r—4

By the sum rule, this is the same as

lim 22° + lim z — lim 5
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Sample Problem 2

Evaluate
lim (22* + x — 5)

r—4
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Sample Problem 2

Evaluate
lim (22* + x — 5)

r—4

By the sum rule, this is the same as

lim 22° + lim z — lim 5

— — —
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Sample Problem 2

Now applying the rule for the identity function f(z) = x again we finally
have

(At —15=32 -4 — 5 — 3]
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Sample Problem 2

Now applying the rule for the identity function f(z) = x again we finally
have

(At —15=32 -4 — 5 — 3]

Although it’s good practice to use the definitions directly, in this case a

good deal of time could be saved by noting that f(z) is a polynomial
and 4 is in its domain, so it has the dire pstitution prope and
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Sample Problem 3

Find

, 1+ 32 3
lim
z—1 \ 1+ 422 + 324
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Sample Problem 3

Find

, 1+ 32 3
lim
z—1 \ 1+ 422 + 324

By the rule for powers, this is
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Sample Problem 3

Find

i 14 3z .
r—1 1 + 4332 —+ 3334

By the rule for powers, this is
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