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The five limit laws

In the following slides, we assume that c is a constant, and that

lim
x→a

f(x) and lim
x→a

g(x)

both exist.
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The five limit laws

1.
lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

Which can be stated as “the limit of the sum is the sum of the limits”.
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The five limit laws

2.
lim
x→a

[f(x) − g(x)] = lim
x→a

f(x) − lim
x→a

g(x)

Which can be stated as “the limit of the difference is the difference of
the limits”.
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The five limit laws

3.
lim
x→a

[cf(x)] = c lim
x→a

f(x)

Which can be stated as “the limit of a constant times a function is the
constant times the limit of the function”.
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The five limit laws

4.
lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

Which can be stated as “the limit of the product is the product of the
limits”.
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The five limit laws

5.

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
if lim

x→a

g(x) 6= 0

Which can be stated as “the limit of the quotient is the quotient of the
limits (provided the limit of the denominator is not zero”.
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Additional limit laws

6. By repeated application of the limit law for products, we obtain

lim
x→a

[f(x)]n =
[

lim
x→a

f(x)
]

n
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Additional limit laws

7. This special limit is used frequently:

lim
x→a

c = c
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Additional limit laws

8. This special limit is also used frequently:

lim
x→a

x = a

Stewart Section 2.3 – p.10/??



Additional limit laws

9.
lim
x→a

xn = an
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Additional limit laws

10.
lim
x→a

n

√
x = n

√
a

(with the assumption, in the case that n is even, that a ≥ 0.
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Additional limit laws

11.
lim
x→a

n

√

f(x) = n

√

f(a)

(with the assumption, in the case that n is even, that f(a) > 0).
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Direct Substitution Property

Definition:

A function f with the property that

lim
x→a

f(x) = f(a)

for every a that belongs to the domain of f is said to have the

direct substitution property
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Direct Substitution Property - Polynomials

Theorem:

For any polynomial function

P (x) = anxn + an−1x
n−1 + · · · + a1x + a0

the direct substitution property holds for any real number a:

lim
x→a

P (x) = P (a) ∀a ∈ R
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Direct Substitution Property - Rational Functions

Theorem:

For any rational function

f(x) =
P (x)

Q(x)
where P and Q are polynomials

the direct substitution property holds for any real number a in the
domain of f :

lim
x→a

P (x)

Q(x)
=

P (a)

Q(a)
∀a such that Q(a) 6= 0
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Direct Substitution Property

Polynomials and rational functions are not the only functions that have
the direct substitution property.

In Section 2.4, we will see that many other functions have this
important property.
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Direct Substitution Property

Polynomials and rational functions are not the only functions that have
the direct substitution property.

In Section 2.4, we will see that many other functions have this
important property.

In fact, we will use the direct substitution property to define a class of
functions known as continuous functions.
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Direct Substitution Property

Polynomials and rational functions are not the only functions that have
the direct substitution property.

In Section 2.4, we will see that many other functions have this
important property.

In fact, we will use the direct substitution property to define a class of
functions known as continuous functions.

Continuous functions are by far the most important class of functions

for building mathematical models of real world phenomena.
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A Limit Theorem

Theorem:

If f and g are two functions and

f(x) = g(x) whenever x 6= a

for some number a, then

lim
x→a

f(x) = lim
x→a

g(x)

provided the limits exist.
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A Limit Theorem

Theorem:

If f and g are two functions and

f(x) = g(x) whenever x 6= a

for some number a, then

lim
x→a

f(x) = lim
x→a

g(x)

provided the limits exist.

This theorem says that if two functions are identical everywhere except
possibly for some value x = a, and the limits of f and g as x → a exist,
they must be identical.
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A Limit Theorem

Theorem:

If f and g are two functions and

f(x) = g(x) whenever x 6= a

for some number a, then

lim
x→a

f(x) = lim
x→a

g(x)

provided the limits exist.

This theorem says that if two functions are identical everywhere except
possibly for some value x = a, and the limits of f and g as x → a exist,
they must be identical.

No assumptions are made regarding the existence of f(a) and g(a).
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Example

Example:

The functions

f(x) =
x − 1

x2 − 1

and

g(x) =
1

x + 1

are identical everywhere except x = 1 because for every value of x

other than 1,
x − 1

x2 − 1
=

x − 1

(x − 1)(x + 1)
=

1

x + 1
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Example

Example:

The functions

f(x) =
x − 1

x2 − 1

and

g(x) =
1

x + 1

are identical everywhere except x = 1 because for every value of x

other than 1,
x − 1

x2 − 1
=

x − 1

(x − 1)(x + 1)
=

1

x + 1

The theorem says that if the limits of f and g as x → 1 exist, they must

be identical, regardless of whether f(1) and g(1) exist.
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A Theorem on Inequalities

Theorem

If
f(x) ≤ g(x)

when x is a value near a (with the possible exception of a itself), and

lim
x→a

f(x) and lim
x→a

g(x)

both exist, then
lim
x→a

f(x) ≤ lim
x→a

g(x)
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A Theorem on Inequalities

Theorem

If
f(x) ≤ g(x)

when x is a value near a (with the possible exception of a itself), and

lim
x→a

f(x) and lim
x→a

g(x)

both exist, then
lim
x→a

f(x) ≤ lim
x→a

g(x)

This theorem can be extended to a very useful result known as the

squeeze theorem.
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The Squeeze Theorem

Theorem

If
f(x) ≤ g(x) ≤ h(x)

when x is a value near a (except possibly at a itself), and

lim
x→a

f(x) = lim
x→a

h(x) = L

then
lim
x→a

g(x) = L
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The Squeeze Theorem

The squeeze theorem is useful in the following situation:

• I want to find limx→a h(x) for some function h

• I know of a function g such that h(x) ≤ g(x) when x is near a

• I know of a function f such that f(x) ≤ h(x) when x is near a

• I can find limx→a f(x) = L1 and limx→a g(x) = L2

• The limits of f and g as x → a are the same: L1 = L2 = L
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The Squeeze Theorem

The squeeze theorem is useful in the following situation:

• I want to find limx→a h(x) for some function h

• I know of a function g such that h(x) ≤ g(x) when x is near a

• I know of a function f such that f(x) ≤ h(x) when x is near a

• I can find limx→a f(x) = L1 and limx→a g(x) = L2

• The limits of f and g as x → a are the same: L1 = L2 = L

Now I can use the squeeze theorem to conclude that

lim
x→a

h(x) = L

without having to actually evaluate this limit.
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Sample Problem 1

Given that
lim
x→a

f(x) = −3 and lim
x→a

g(x) = 0

evaluate

lim
x→a

f(x) − 3g(x)

g(x) + f(x)
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Sample Problem 1

Given that
lim
x→a

f(x) = −3 and lim
x→a

g(x) = 0

evaluate

lim
x→a

f(x) − 3g(x)

g(x) + f(x)

By the sum rule, the limit of g(x) + f(x) = −3 + 0 is not zero, so by the
quotient rule

lim
x→a

f(x) − 3g(x)

g(x) + f(x)
=

limx→a(f(x) − 3g(x))

limx→a(g(x) + f(x))
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Sample Problem 1

By the sum rule,

limx→a(f(x) − 3g(x))

limx→a(g(x) + f(x))
=

limx→a f(x) − limx→a 3g(x)

limx→a g(x) + limx→a f(x)
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Sample Problem 1

By the sum rule,

limx→a(f(x) − 3g(x))

limx→a(g(x) + f(x))
=

limx→a f(x) − limx→a 3g(x)

limx→a g(x) + limx→a f(x)

Finally by the constant multiple rule,

limx→a f(x) − limx→a 3g(x)

limx→a g(x) + limx→a f(x)
=

limx→a f(x) − 3 limx→a g(x)

limx→a g(x) + limx→a f(x)

and by substitution

=
(−3) − 3 · 0
0 + (−3)

=
−3

−3
= 1
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Sample Problem 2

Evaluate
lim
x→4

(2x2 + x − 5)
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Sample Problem 2

Evaluate
lim
x→4

(2x2 + x − 5)

By the sum rule, this is the same as

lim
x→4

2x2 + lim
x→4

x − lim
x→4

5
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Sample Problem 2

Evaluate
lim
x→4

(2x2 + x − 5)

By the sum rule, this is the same as

lim
x→4

2x2 + lim
x→4

x − lim
x→4

5

Applying the rule for a constant multiple,

2 lim
x→4

x2 + lim
x→4

x − lim
x→4

5
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Sample Problem 2

Evaluate
lim
x→4

(2x2 + x − 5)

By the sum rule, this is the same as

lim
x→4

2x2 + lim
x→4

x − lim
x→4

5

Applying the rule for a constant multiple,

2 lim
x→4

x2 + lim
x→4

x − lim
x→4

5

Applying the rules for the identity and constant functions (rules 7 and
8), and the rule for a power of a function, we get

2( lim
x→4

x)2 + 4 − 5
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Sample Problem 2

Now applying the rule for the identity function f(x) = x again we finally
have

2(42) + 4 − 5 = 32 + 4 − 5 = 31
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Sample Problem 2

Now applying the rule for the identity function f(x) = x again we finally
have

2(42) + 4 − 5 = 32 + 4 − 5 = 31

Although it’s good practice to use the definitions directly, in this case a
good deal of time could be saved by noting that f(x) is a polynomial
and 4 is in its domain, so it has the direct substitution property and
therefore the limit is

f(4) = 2 · 42 + 4 − 5 = 31

Naturally, on an exam you would want to do the problem this way to
save time.
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Sample Problem 3

Find

lim
x→1

(

1 + 3x

1 + 4x2 + 3x4

)3

Stewart Section 2.3 – p.27/??



Sample Problem 3

Find

lim
x→1

(

1 + 3x

1 + 4x2 + 3x4

)3

By the rule for powers, this is

(

lim
x→1

1 + 3x

1 + 4x2 + 3x4

)3
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Sample Problem 3

Find

lim
x→1

(

1 + 3x

1 + 4x2 + 3x4

)3

By the rule for powers, this is

(

lim
x→1

1 + 3x

1 + 4x2 + 3x4

)3

The limit can be evaluated directly from the definitions, but it’s best in
this case to just note that the expression in the limit is a rational
function, and 1 is in its domain, so again we can save time and effort
by using the direct substitution property to get

(

lim
x→1

1 + 3x

1 + 4x2 + 3x4

)3

=

(

1 + 3 · 1
1 + 4 · 12 + 3 · 14

)3

=

(

4

8

)3

=
1

8
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