Gene Quinn

Parametric Curves

It is possible to determine a curve by specifying a point (x, y) in terms of two functions f and g of a third variable t, called a parameter, using the equations

$$
x=f(t) \quad y=g(t)
$$

which are called parametric equations

Parametric Curves

It is possible to determine a curve by specifying a point (x, y) in terms of two functions f and g of a third variable t, called a parameter, using the equations

$$
x=f(t) \quad y=g(t)
$$

which are called parametric equations
The curve traced out as t varies is called a parametric curve.

Parametric Curves

It is possible to determine a curve by specifying a point (x, y) in terms of two functions f and g of a third variable t, called a parameter, using the equations

$$
x=f(t) \quad y=g(t)
$$

which are called parametric equations
The curve traced out as t varies is called a parametric curve.
One way to visualize how this works is to think of the variable t as a time parameter.

Then, think of the functions $x=f(t)$ and $y=g(t)$ as specifying the path of a particle that is traced out as time evolves.

Parametric Curves

It is possible to determine a curve by specifying a point (x, y) in terms of two functions f and g of a third variable t, called a parameter, using the equations

$$
x=f(t) \quad y=g(t)
$$

which are called parametric equations
The curve traced out as t varies is called a parametric curve.
One way to visualize how this works is to think of the variable t as a time parameter.

Then, think of the functions $x=f(t)$ and $y=g(t)$ as specifying the path of a particle that is traced out as time evolves.

The position of the particle after t seconds is given by the coordinates

Parametric Curves

Example: Suppose we define the following parametric equations:

$$
x=\cos (t) \quad \text { and } \quad y=\sin (t) \quad \text { for } \quad t \in(0, \pi)
$$

Parametric Curves

Example: Suppose we define the following parametric equations:

$$
x=\cos (t) \quad \text { and } \quad y=\sin (t) \quad \text { for } \quad t \in(0, \pi)
$$

Think of a "particle" starting at

$$
(\cos (0), \sin (0))=(1,0)
$$

and moving through some trajectory in the plane.

Parametric Curves

Example: Suppose we define the following parametric equations:

$$
x=\cos (t) \quad \text { and } \quad y=\sin (t) \quad \text { for } \quad t \in(0, \pi)
$$

Think of a "particle" starting at

$$
(\cos (0), \sin (0))=(1,0)
$$

and moving through some trajectory in the plane.
The trajectory is such that after t seconds, the position of the particle will be

$$
(\cos (t), \sin (t))
$$

In this case, the parametric curve is the top half of a unit circle centered at the origin.

Parametric Curves

Example: In the specification of a parametric curve,

$$
x=f(t), \quad y=g(t)
$$

one of the simplest cases occurs when f is the identity function,

$$
f(x)=x \quad \forall x \in(-\infty, \infty)
$$

Parametric Curves

Example: In the specification of a parametric curve,

$$
x=f(t), \quad y=g(t)
$$

one of the simplest cases occurs when f is the identity function,

$$
f(x)=x \quad \forall x \in(-\infty, \infty)
$$

In this case, the parametric curve behaves just like the graph of the ordinary function $y=g(x)$.

Parametric Curves

Example: In the specification of a parametric curve,

$$
x=f(t), \quad y=g(t)
$$

one of the simplest cases occurs when f is the identity function,

$$
f(x)=x \quad \forall x \in(-\infty, \infty)
$$

In this case, the parametric curve behaves just like the graph of the ordinary function $y=g(x)$.

Example: Define a set of parametric equations with f being the identity function:

$$
x=t \quad \text { and } \quad y=3 * t+4 \quad \text { for } \quad t \in[0,4]
$$

The parametric curve is identical to the graph of $y=3 x+4$ on $[0,4]$.

Parametric Equations

Example: Another a set of parametric equations with f being the identity function:

$$
x=t \quad \text { and } \quad y=\sin (t) \quad \text { for } \quad t \in[0,2 \pi]
$$

The parametric curve is identical to the graph of $y=\sin x$ on $[0,2 \pi]$.

Parametric Equations

Example: Another a set of parametric equations with f being the identity function:

$$
x=t \quad \text { and } \quad y=\sin (t) \quad \text { for } \quad t \in[0,2 \pi]
$$

The parametric curve is identical to the graph of $y=\sin x$ on $[0,2 \pi]$.

Example:

$$
x=t \quad \text { and } \quad y=t^{2} \quad \text { for } \quad t \in[0,3]
$$

The parametric curve is identical to the graph of $y=x^{2}$ on $[0,3]$.

Parametric Curves

Example: A slight variation on the previous case can be used to plot the inverse of a function.

Again we start with a set of parametric equations

$$
x=f(t), \quad y=g(t)
$$

Parametric Curves

Example: A slight variation on the previous case can be used to plot the inverse of a function.

Again we start with a set of parametric equations

$$
x=f(t), \quad y=g(t)
$$

This time, we take g to be the identity function, and let f be the function whose inverse we want to plot.

Parametric Curves

Example: A slight variation on the previous case can be used to plot the inverse of a function.

Again we start with a set of parametric equations

$$
x=f(t), \quad y=g(t)
$$

This time, we take g to be the identity function, and let f be the function whose inverse we want to plot.

This time, instead of behaving like the graph of $y=f(x)$, the parametric plot will be identical to the graph of $y=f^{-1}(x)$, the inverse of f.

Parametric Equations

Example: As we have seen, if we let f be the identity function, the following system will produce a parametric curve identical to the graph of $y=e^{x}$ on $[-2,2]$:

$$
x=t \quad \text { and } \quad y=e^{t} \quad \text { for } \quad t \in[-2,2]
$$

The parametric curve is identical to the graph of $y=e^{x}$ on $[-2,2]$.

Parametric Equations

Example: As we have seen, if we let f be the identity function, the following system will produce a parametric curve identical to the graph of $y=e^{x}$ on $[-2,2]$:

$$
x=t \quad \text { and } \quad y=e^{t} \quad \text { for } \quad t \in[-2,2]
$$

The parametric curve is identical to the graph of $y=e^{x}$ on $[-2,2]$.
Example: Now let g be the identity function and $f(x)=e^{x}$:

$$
x=e^{t} \quad \text { and } \quad y=t \quad \text { for } \quad t \in(-2,2)
$$

The parametric curve is identical to the graph of $y=\ln x$ on $\left[e^{-2}, e^{2}\right]$.

Parametric Curves

If neither f nor g is the identity function, it is harder to visualize what the parametric curve will look like.

Parametric Curves

If neither f nor g is the identity function, it is harder to visualize what the parametric curve will look like.

Often this can be done by taking several values of t, and plotting the points

$$
(f(t), g(t))
$$

Parametric Curves

Example: Find the parametric curve or trajectory described by the following parametric equations:

$$
x=\sin t \quad \text { and } \quad y=\sin ^{2} t \quad \text { for } \quad t \in[0,6 \pi]
$$

Parametric Curves

Example: Find the parametric curve or trajectory described by the following parametric equations:

$$
x=\sin t \quad \text { and } \quad y=\sin ^{2} t \quad \text { for } \quad t \in[0,6 \pi]
$$

In fact, the trajectory in this case matches the parabola

$$
y=x^{2} \quad-1 \leq x \leq 1
$$

Parametric Curves

$$
x=\sin t \quad \text { and } \quad y=\sin ^{2} t \quad \text { for } \quad t \in[0,6 \pi]
$$

Here is a description of the trajectory for the above parametric equations:

- The particle begins at the origin and traces the parabola to $(1,1)$
- The particle then reverses direction and traces the parabola back to $(0,0)$
- The particle then traces the parabola to $(-1,1)$
- The particle then retraces the parabola back to $(0,0)$
- The previous 4 steps are repeated twice more, for a total of three times.

Parametric Curves

$$
x=\sin t \quad \text { and } \quad y=\sin ^{2} t \quad \text { for } \quad t \in[0,6 \pi]
$$

Here is a description of the trajectory for the above parametric equations:

- The particle begins at the origin and traces the parabola to $(1,1)$
- The particle then reverses direction and traces the parabola back to $(0,0)$
- The particle then traces the parabola to $(-1,1)$
- The particle then retraces the parabola back to $(0,0)$
- The previous 4 steps are repeated twice more, for a total of three times.

It is possible, and not unusual, for part or all of the trajectory to be traced more than once as t varies over its range of values.

Parametric Equations

Example: The parametric curve produced by

$$
x=\cos t \quad \text { and } \quad y=\sin t \quad \text { for } \quad t \in[0,2 \pi]
$$

is a unit circle centered at the origin.

Parametric Equations

Example: The parametric curve produced by

$$
x=\cos t \quad \text { and } \quad y=\sin t \quad \text { for } \quad t \in[0,2 \pi]
$$

is a unit circle centered at the origin.
Example: The parametric curve produced by

$$
x=\cos 2 t \quad \text { and } \quad y=\sin 2 t \quad \text { for } \quad t \in[0,2 \pi]
$$

looks identical to the one above, except that the circle is traced twice as t varies from 0 to 2π.

Parametric Curves

Note that in the previous two examples, the parametric curve produced by the two functions

$$
x=f(t) \quad y=g(t)
$$

is not the graph of a function
(they both fail the vertical line test)

Parametric Curves

Note that in the previous two examples, the parametric curve produced by the two functions

$$
x=f(t) \quad y=g(t)
$$

is not the graph of a function
(they both fail the vertical line test)
The class of parametric curves is larger than the class of function graphs, because we can always parametrize the graph of $y=f(x)$ by taking

$$
x=t \quad \text { and } \quad y=f(t)
$$

Converting Parametric to Cartesian

Sometimes it is useful to find an equivalent Cartesian form for a set of parametric equations.

Thas is, given equations of the form

$$
x=f(t) \quad y=g(t)
$$

find y as a function of x alone:

$$
y=h(x)
$$

Converting Parametric to Cartesian

Sometimes it is useful to find an equivalent Cartesian form for a set of parametric equations.

Thas is, given equations of the form

$$
x=f(t) \quad y=g(t)
$$

find y as a function of x alone:

$$
y=h(x)
$$

Usually this is done by elminating t from the equations in the following way:

- use one of the equations to obtain t as a function of x or y
- substitute this function into the other equation wherever t appears

Sample Problem

Eliminate the parameter to find a Cartesian equation of the curve:

$$
x=t^{2} \quad y=6-3 t
$$

Sample Problem

Eliminate the parameter to find a Cartesian equation of the curve:

$$
x=t^{2} \quad y=6-3 t
$$

Solve the second equation for t :

$$
y=6-3 t \quad \Rightarrow \quad t=\frac{6-y}{3}
$$

Sample Problem

Eliminate the parameter to find a Cartesian equation of the curve:

$$
x=t^{2} \quad y=6-3 t
$$

Solve the second equation for t :

$$
y=6-3 t \quad \Rightarrow \quad t=\frac{6-y}{3}
$$

Now substitute this into the first equation:

$$
x=\left(\frac{6-y}{3}\right)^{2}=\frac{1}{9}(6-y)^{2}
$$

