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Parametric Curves

It is possible to determine a curve by specifying a point (x, y) in terms
of two functions f and g of a third variable t, called a parameter, using
the equations

x = f(t) y = g(t)

which are called parametric equations
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of two functions f and g of a third variable t, called a parameter, using
the equations

x = f(t) y = g(t)

which are called parametric equations

The curve traced out as t varies is called a parametric curve.
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Parametric Curves

It is possible to determine a curve by specifying a point (x, y) in terms
of two functions f and g of a third variable t, called a parameter, using
the equations

x = f(t) y = g(t)

which are called parametric equations

The curve traced out as t varies is called a parametric curve.

One way to visualize how this works is to think of the variable t as a
time parameter.

Then, think of the functions x = f(t) and y = g(t) as specifying the
path of a particle that is traced out as time evolves.
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Parametric Curves

It is possible to determine a curve by specifying a point (x, y) in terms
of two functions f and g of a third variable t, called a parameter, using
the equations

x = f(t) y = g(t)

which are called parametric equations

The curve traced out as t varies is called a parametric curve.

One way to visualize how this works is to think of the variable t as a
time parameter.

Then, think of the functions x = f(t) and y = g(t) as specifying the
path of a particle that is traced out as time evolves.

The position of the particle after t seconds is given by the coordinates

(f(t), g(t))
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Parametric Curves

Example: Suppose we define the following parametric equations:

x = cos(t) and y = sin(t) for t ∈ (0, π)
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Parametric Curves

Example: Suppose we define the following parametric equations:

x = cos(t) and y = sin(t) for t ∈ (0, π)

Think of a "particle" starting at

(cos(0), sin(0)) = (1, 0)

and moving through some trajectory in the plane.
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Parametric Curves

Example: Suppose we define the following parametric equations:

x = cos(t) and y = sin(t) for t ∈ (0, π)

Think of a "particle" starting at

(cos(0), sin(0)) = (1, 0)

and moving through some trajectory in the plane.

The trajectory is such that after t seconds, the position of the particle
will be

(cos(t), sin(t))

In this case, the parametric curve is the top half of a unit circle
centered at the origin.
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Parametric Curves

Example: In the specification of a parametric curve,

x = f(t), y = g(t)

one of the simplest cases occurs when f is the identity function,

f(x) = x ∀x ∈ (−∞,∞)
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Parametric Curves

Example: In the specification of a parametric curve,

x = f(t), y = g(t)

one of the simplest cases occurs when f is the identity function,

f(x) = x ∀x ∈ (−∞,∞)

In this case, the parametric curve behaves just like the graph of the
ordinary function y = g(x).
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Parametric Curves

Example: In the specification of a parametric curve,

x = f(t), y = g(t)

one of the simplest cases occurs when f is the identity function,

f(x) = x ∀x ∈ (−∞,∞)

In this case, the parametric curve behaves just like the graph of the
ordinary function y = g(x).

Example: Define a set of parametric equations with f being the
identity function:

x = t and y = 3 ∗ t + 4 for t ∈ [0, 4]

The parametric curve is identical to the graph of y = 3x + 4 on [0, 4].
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Parametric Equations

Example: Another a set of parametric equations with f being the
identity function:

x = t and y = sin(t) for t ∈ [0, 2π]

The parametric curve is identical to the graph of y = sinx on [0, 2π].
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Parametric Equations

Example: Another a set of parametric equations with f being the
identity function:

x = t and y = sin(t) for t ∈ [0, 2π]

The parametric curve is identical to the graph of y = sinx on [0, 2π].

Example:

x = t and y = t2 for t ∈ [0, 3]

The parametric curve is identical to the graph of y = x2 on [0, 3].
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Parametric Curves

Example: A slight variation on the previous case can be used to plot
the inverse of a function.

Again we start with a set of parametric equations

x = f(t), y = g(t)
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Parametric Curves

Example: A slight variation on the previous case can be used to plot
the inverse of a function.

Again we start with a set of parametric equations

x = f(t), y = g(t)

This time, we take g to be the identity function, and let f be the
function whose inverse we want to plot.
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Parametric Curves

Example: A slight variation on the previous case can be used to plot
the inverse of a function.

Again we start with a set of parametric equations

x = f(t), y = g(t)

This time, we take g to be the identity function, and let f be the
function whose inverse we want to plot.

This time, instead of behaving like the graph of y = f(x), the parametric

plot will be identical to the graph of y = f−1(x), the inverse of f .
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Parametric Equations

Example: As we have seen, if we let f be the identity function, the
following system will produce a parametric curve identical to the graph
of y = ex on [−2, 2]:

x = t and y = et for t ∈ [−2, 2]

The parametric curve is identical to the graph of y = ex on [−2, 2].
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Parametric Equations

Example: As we have seen, if we let f be the identity function, the
following system will produce a parametric curve identical to the graph
of y = ex on [−2, 2]:

x = t and y = et for t ∈ [−2, 2]

The parametric curve is identical to the graph of y = ex on [−2, 2].

Example: Now let g be the identity function and f(x) = ex:

x = et and y = t for t ∈ (−2, 2)

The parametric curve is identical to the graph of y = lnx on [e−2, e2].
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Parametric Curves

If neither f nor g is the identity function, it is harder to visualize what
the parametric curve will look like.
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Parametric Curves

If neither f nor g is the identity function, it is harder to visualize what
the parametric curve will look like.

Often this can be done by taking several values of t, and plotting the
points

(f(t), g(t))
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Parametric Curves

Example: Find the parametric curve or trajectory described by the
following parametric equations:

x = sin t and y = sin2 t for t ∈ [0, 6π]
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Parametric Curves

Example: Find the parametric curve or trajectory described by the
following parametric equations:

x = sin t and y = sin2 t for t ∈ [0, 6π]

In fact, the trajectory in this case matches the parabola

y = x2 − 1 ≤ x ≤ 1
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Parametric Curves

x = sin t and y = sin2 t for t ∈ [0, 6π]

Here is a description of the trajectory for the above parametric
equations:

• The particle begins at the origin and traces the parabola to (1, 1)

• The particle then reverses direction and traces the parabola back
to (0, 0)

• The particle then traces the parabola to (−1, 1)

• The particle then retraces the parabola back to (0, 0)

• The previous 4 steps are repeated twice more, for a total of three
times.
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Parametric Curves

x = sin t and y = sin2 t for t ∈ [0, 6π]

Here is a description of the trajectory for the above parametric
equations:

• The particle begins at the origin and traces the parabola to (1, 1)

• The particle then reverses direction and traces the parabola back
to (0, 0)

• The particle then traces the parabola to (−1, 1)

• The particle then retraces the parabola back to (0, 0)

• The previous 4 steps are repeated twice more, for a total of three
times.

It is possible, and not unusual, for part or all of the trajectory to be traced

more than once as t varies over its range of values.
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Parametric Equations

Example: The parametric curve produced by

x = cos t and y = sin t for t ∈ [0, 2π]

is a unit circle centered at the origin.
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Parametric Equations

Example: The parametric curve produced by

x = cos t and y = sin t for t ∈ [0, 2π]

is a unit circle centered at the origin.

Example: The parametric curve produced by

x = cos 2t and y = sin 2t for t ∈ [0, 2π]

looks identical to the one above, except that the circle is traced twice
as t varies from 0 to 2π.
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Parametric Curves

Note that in the previous two examples, the parametric curve produced
by the two functions

x = f(t) y = g(t)

is not the graph of a function

(they both fail the vertical line test)
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Parametric Curves

Note that in the previous two examples, the parametric curve produced
by the two functions

x = f(t) y = g(t)

is not the graph of a function

(they both fail the vertical line test)

The class of parametric curves is larger than the class of function
graphs, because we can always parametrize the graph of y = f(x) by
taking

x = t and y = f(t)
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Converting Parametric to Cartesian

Sometimes it is useful to find an equivalent Cartesian form for a set of
parametric equations.

Thas is, given equations of the form

x = f(t) y = g(t)

find y as a function of x alone:

y = h(x)
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Converting Parametric to Cartesian

Sometimes it is useful to find an equivalent Cartesian form for a set of
parametric equations.

Thas is, given equations of the form

x = f(t) y = g(t)

find y as a function of x alone:

y = h(x)

Usually this is done by elminating t from the equations in the following
way:

• use one of the equations to obtain t as a function of x or y

• substitute this function into the other equation wherever t appears
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Sample Problem

Eliminate the parameter to find a Cartesian equation of the curve:

x = t2 y = 6 − 3t
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Sample Problem

Eliminate the parameter to find a Cartesian equation of the curve:

x = t2 y = 6 − 3t

Solve the second equation for t:

y = 6 − 3t ⇒ t =
6 − y

3
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Sample Problem

Eliminate the parameter to find a Cartesian equation of the curve:

x = t2 y = 6 − 3t

Solve the second equation for t:

y = 6 − 3t ⇒ t =
6 − y

3

Now substitute this into the first equation:

x =

(

6 − y

3

)2

=
1

9
(6 − y)2
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