Question 1

The function f defined by:

$$
f(x)=3 x^{3}+2 x^{2}+x+1
$$

would best be described as a:

1. transcendental
2. exponential
3. power
4. rational
5. polynomial
6. None of the above

Question 1

The function f defined by:

$$
f(x)=3 x^{3}+2 x^{2}+x+1
$$

would best be described as a:

1. transcendental
2. exponential
3. power
4. rational
5. polynomial
6. None of the above
f is a polynomial.

Question 2

The function f defined by:

$$
f(x)=\sqrt[3]{x^{2}}
$$

would best be described as a:

1. transcendental
2. exponential
3. power
4. rational
5. polynomial
6. None of the above

Question 2

The function f defined by:

$$
f(x)=\sqrt[3]{x^{2}}
$$

would best be described as a:

1. transcendental
2. exponential
3. power
4. rational
5. polynomial
6. None of the above
f is a power function. It can also be written using a fractional exponent. $f(x)=x^{\frac{2}{3}}$

Question 3

The function f defined by:

$$
f(x)=\tan ^{-1} x
$$

would best be described as a:

1. transcendental
2. exponential
3. power
4. rational
5. polynomial
6. None of the above

Question 3

The function f defined by:

$$
f(x)=\tan ^{-1} x
$$

would best be described as a:

1. transcendental
2. exponential
3. power
4. rational
5. polynomial
6. None of the above
f is a transcendental function

Question 4

The difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

of the function $f(x)=3 x+2$ is:

$$
\begin{array}{ll}
\text { 1. } & 2+h \\
\text { 2. } & 2 \\
\text { 3. } & 3
\end{array}
$$

4. $3 h+2$
5. -3
6. None of the above

Question 4

The difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

of the function $f(x)=3 x+2$ is:

$$
\begin{array}{ll}
\text { 1. } & 2+h \\
\text { 2. } & 2 \\
\text { 3. } & 3
\end{array}
$$

4. $3 h+2$
5. -3
6. None of the above

The difference quotient is 3

Question 5

The difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

of the function $f(x)=-5 x-3$ is:

1. $5+h$
2. -5
3. -3
4. $5 \mathrm{~h}+3$
5. 3
6. None of the above

Question 5

The difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

of the function $f(x)=-5 x-3$ is:

$$
\begin{array}{ll}
\text { 1. } & 5+h \\
\text { 2. } & -5 \\
\text { 3. } & -3
\end{array}
$$

4. $5 h+3$
5. 3
6. None of the above

The difference quotient is -5

Question 6

The difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

of the function $f(x)=-x+t$ is:

1. $1+\mathrm{t}$
2. t
3. h
4. -1
5. $-h+t$
6. None of the above

Question 6

The difference quotient

$$
\frac{f(x+h)-f(x)}{h}
$$

of the function $f(x)=-x+t$ is:

1. $1+\mathrm{t}$
2. t
3. h
4. -1
5. $-\mathrm{h}+\mathrm{t}$
6. None of the above

The difference quotient is -1 . We don't need to know the value of t.

