
Intermediate Value Theorem
The intermediate value theorem states that, if a function f

is continuous on a closed interval [a, b] (that is, an interval
that includes both endpoints) and f(a) 6= f(b), then for every
N ∈ (a, b), there exists a c ∈ (a, b) with f(c) = N .
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Note that the theorem does not apply if f is not continuous
at every point of [a, b].
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Intermediate Value Theorem
The intermediate value theorem states that, if a function f

is continuous on a closed interval [a, b] (that is, an interval
that includes both endpoints) and f(a) 6= f(b), then for every
N ∈ (a, b), there exists a c ∈ (a, b) with f(c) = N .

Note that the theorem does not apply if f is not continuous
at every point of [a, b].

The theorem also does not apply if f(a) = f(b), that is, if the
function value is the same at both endpoints.
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IVT
The intermediate value theorem can be used to prove that
an equation has a root, that is, a point where

f(c) = 0, c ∈ [a, b]
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IVT
The intermediate value theorem can be used to prove that
an equation has a root, that is, a point where

f(c) = 0, c ∈ [a, b]

If f(a) < 0 and f(b) > 0, the intermediate value theorem
guarantees that f assumes every value between f(a) and
f(b) somewhere on the open interval (a, b).
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IVT
The intermediate value theorem can be used to prove that
an equation has a root, that is, a point where

f(c) = 0, c ∈ [a, b]

If f(a) < 0 and f(b) > 0, the intermediate value theorem
guarantees that f assumes every value between f(a) and
f(b) somewhere on the open interval (a, b).

In this case, since f(a) < 0 < f(b), the theorem guarantees
the existince of a c ∈ [a, b] with f(c) = 0.
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Example 1
Prove that the equation

4 − x2 = 0

has a root in the interval (1, 3)
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Example 1
Prove that the equation

4 − x2 = 0

has a root in the interval (1, 3)

Note that f(x) = 4 − x2 is continuous everywhere, so it is
also continuous on the closed interval [1, 3]
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Example 1
Prove that the equation

4 − x2 = 0

has a root in the interval (1, 3)

Note that f(x) = 4 − x2 is continuous everywhere, so it is
also continuous on the closed interval [1, 3]

Now note that f(1) = 4 − 12 = 3 > 0 and
f(3) = 4 − 32 = −5 < 0, so by the intermediate value
theorem f has a root in (1, 3).
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Example 2
Prove that the equation

1 − x +
√

2x = 0

has a root in the interval (1, 8)
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Example 2
Prove that the equation

1 − x +
√

2x = 0

has a root in the interval (1, 8)

Note that f(x) = 1 − x +
√

2x is continuous on [0,∞), so it is
also continuous on the closed interval [1, 8]
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Example 2
Prove that the equation

1 − x +
√

2x = 0

has a root in the interval (1, 8)

Note that f(x) = 1 − x +
√

2x is continuous on [0,∞), so it is
also continuous on the closed interval [1, 8]

Now note that f(1) = 1 − 1 + sqrt2 > 0 and
f(8) = 1 − 8 +

√
16 < 0, so f has a root in (1, 8).
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Example 2
Let

f(x) =
3x + 2

5x − 1
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As x → ∞, f(x) → 3

5
from above.
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Example 2
Let

f(x) =
3x + 2

5x − 1

As x → ∞, f(x) → 3

5
from above.

As x → −∞, f(x) → 3

5
from below.
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Example 3
Let

f(x) = 2 + ex
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Example 3
Let

f(x) = 2 + ex

As x → −∞, f(x) → 2 from above.
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Question 1
Find the horizontal asymptote(s) of

f(x) = 2 +
1

x2

1. y = 0 4. y = −2

2. y = 1 5. y = −1

3. y = 2 6. f has no horizontal asymptotes
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1. y = 0 4. y = −2

2. y = 1 5. y = −1

3. y = 2 6. f has no horizontal asymptotes

3. y = 2.
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Question 2
Find the horizontal asymptote(s) of

f(x) = 3 +
1

x2 − 1

1. y = 0 4. y = 3

2. y = 1 5. y = −3

3. y = 2 6. f has no horizontal asymptotes

Stewart Section 2.5 Continuity – p. 8/9



Question 2
Find the horizontal asymptote(s) of

f(x) = 3 +
1

x2 − 1

1. y = 0 4. y = 3

2. y = 1 5. y = −3

3. y = 2 6. f has no horizontal asymptotes

4. y = 3.
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Question 3
Find the horizontal asymptote(s) of

f(x) =
2x5 + 7x3 − 15x + 10

x5 − 8x4 + 2x2 + 3

1. y = 0 4. y = 3

2. y = 1 5. y = −3

3. y = 2 6. f has no horizontal asymptotes
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