Intermediate Value Theorem

The *intermediate value theorem* states that, if a function f is continuous on a **closed** interval [a, b] (that is, an interval that includes both endpoints) and $f(a) \neq f(b)$, then for every $N \in (a, b)$, there exists a $c \in (a, b)$ with f(c) = N.

Intermediate Value Theorem

The *intermediate value theorem* states that, if a function f is continuous on a **closed** interval [a, b] (that is, an interval that includes both endpoints) and $f(a) \neq f(b)$, then for every $N \in (a, b)$, there exists a $c \in (a, b)$ with f(c) = N.

Note that the theorem does not apply if f is not continuous at every point of [a, b].

Intermediate Value Theorem

The *intermediate value theorem* states that, if a function f is continuous on a **closed** interval [a, b] (that is, an interval that includes both endpoints) and $f(a) \neq f(b)$, then for every $N \in (a, b)$, there exists a $c \in (a, b)$ with f(c) = N.

Note that the theorem does not apply if f is not continuous at every point of [a, b].

The theorem also does not apply if f(a) = f(b), that is, if the function value is the same at both endpoints.

IVT

The intermediate value theorem can be used to prove that an equation has a **root**, that is, a point where

$$f(c) = 0, \quad c \in [a, b]$$

IVT

The intermediate value theorem can be used to prove that an equation has a **root**, that is, a point where

$$f(c) = 0, \quad c \in [a, b]$$

If f(a) < 0 and f(b) > 0, the intermediate value theorem guarantees that f assumes every value between f(a) and f(b) somewhere on the open interval (a, b).

IVT

The intermediate value theorem can be used to prove that an equation has a **root**, that is, a point where

 $f(c) = 0, \quad c \in [a, b]$

If f(a) < 0 and f(b) > 0, the intermediate value theorem guarantees that f assumes every value between f(a) and f(b) somewhere on the open interval (a, b).

In this case, since f(a) < 0 < f(b), the theorem guarantees the existince of a $c \in [a, b]$ with f(c) = 0.

Prove that the equation

$$4 - x^2 = 0$$

has a root in the interval (1,3)

Prove that the equation

$$4 - x^2 = 0$$

has a root in the interval (1,3)

Note that $f(x) = 4 - x^2$ is continuous everywhere, so it is also continuous on the closed interval [1,3]

Prove that the equation

$$4 - x^2 = 0$$

has a root in the interval (1,3)

Note that $f(x) = 4 - x^2$ is continuous everywhere, so it is also continuous on the closed interval [1,3]

Now note that $f(1) = 4 - 1^2 = 3 > 0$ and $f(3) = 4 - 3^2 = -5 < 0$, so by the intermediate value theorem *f* has a root in (1, 3).

Prove that the equation

$$1 - x + \sqrt{2x} = 0$$

has a root in the interval (1, 8)

Prove that the equation

$$1 - x + \sqrt{2x} = 0$$

has a root in the interval (1,8)

Note that $f(x) = 1 - x + \sqrt{2x}$ is continuous on $[0, \infty)$, so it is also continuous on the closed interval [1, 8]

Prove that the equation

$$1 - x + \sqrt{2x} = 0$$

has a root in the interval (1, 8)

Note that $f(x) = 1 - x + \sqrt{2x}$ is continuous on $[0, \infty)$, so it is also continuous on the closed interval [1, 8]

Now note that f(1) = 1 - 1 + sqrt2 > 0 and $f(8) = 1 - 8 + \sqrt{16} < 0$, so *f* has a root in (1,8).

Let

$$f(x) = \frac{3x+2}{5x-1}$$

Let

$$f(x) = \frac{3x+2}{5x-1}$$

As $x \to \infty$, $f(x) \to \frac{3}{5}$ from above.

Let

$$f(x) = \frac{3x+2}{5x-1}$$

As $x \to \infty$, $f(x) \to \frac{3}{5}$ from above. As $x \to -\infty$, $f(x) \to \frac{3}{5}$ from below.

Let

$$f(x) = 2 + e^x$$

Let

$$f(x) = 2 + e^x$$

As $x \to -\infty$, $f(x) \to 2$ from above.

Find the horizontal asymptote(s) of

$$f(x) = 2 + \frac{1}{x^2}$$

y = 0
 y = 1
 y = 2

4. y = -2
5. y = -1
6. *f* has no horizontal asymptote

Find the horizontal asymptote(s) of

$$f(x) = 2 + \frac{1}{x^2}$$

- **1.** y = 0**2.** y = 1
- **3.** *y* = 2

4. *y* = −2
5. *y* = −1
6. *f* has no horizontal asymptote

3. *y* = 2.

Find the horizontal asymptote(s) of

$$f(x) = 3 + \frac{1}{x^2 - 1}$$

1. y = 0**2.** y = 1

3. y = 2

4. y = 3
5. y = -3
6. *f* has no horizontal asymptote

Find the horizontal asymptote(s) of

$$f(x) = 3 + \frac{1}{x^2 - 1}$$

y = 0
 y = 1

3. y = 2

4. y = 3
5. y = -3
6. *f* has no horizontal asymptote

4. *y* = 3.

Find the horizontal asymptote(s) of

$$f(x) = \frac{2x^5 + 7x^3 - 15x + 10}{x^5 - 8x^4 + 2x^2 + 3}$$

y = 0
 y = 1
 y = 2

4. y = 3
5. y = -3
6. *f* has no horizontal asymptote

Find the horizontal asymptote(s) of

$$f(x) = \frac{2x^5 + 7x^3 - 15x + 10}{x^5 - 8x^4 + 2x^2 + 3}$$

y = 0
 y = 1
 y = 2

4. y = 3
5. y = -3
6. *f* has no horizontal asymptote

3. *y* = 2.