Intermediate Value Theorem

The intermediate value theorem states that, if a function f is continuous on a closed interval $[a, b]$ (that is, an interval that includes both endpoints) and $f(a) \neq f(b)$, then for every $N \in(a, b)$, there exists a $c \in(a, b)$ with $f(c)=N$.

Intermediate Value Theorem

The intermediate value theorem states that, if a function f is continuous on a closed interval $[a, b]$ (that is, an interval that includes both endpoints) and $f(a) \neq f(b)$, then for every $N \in(a, b)$, there exists a $c \in(a, b)$ with $f(c)=N$.
Note that the theorem does not apply if f is not continuous at every point of $[a, b]$.

Intermediate Value Theorem

The intermediate value theorem states that, if a function f is continuous on a closed interval $[a, b]$ (that is, an interval that includes both endpoints) and $f(a) \neq f(b)$, then for every $N \in(a, b)$, there exists a $c \in(a, b)$ with $f(c)=N$.
Note that the theorem does not apply if f is not continuous at every point of $[a, b]$.
The theorem also does not apply if $f(a)=f(b)$, that is, if the function value is the same at both endpoints.

The intermediate value theorem can be used to prove that an equation has a root, that is, a point where

$$
f(c)=0, \quad c \in[a, b]
$$

IVT
The intermediate value theorem can be used to prove that an equation has a root, that is, a point where

$$
f(c)=0, \quad c \in[a, b]
$$

If $f(a)<0$ and $f(b)>0$, the intermediate value theorem guarantees that f assumes every value between $f(a)$ and $f(b)$ somewhere on the open interval (a, b).

IVT
The intermediate value theorem can be used to prove that an equation has a root, that is, a point where

$$
f(c)=0, \quad c \in[a, b]
$$

If $f(a)<0$ and $f(b)>0$, the intermediate value theorem guarantees that f assumes every value between $f(a)$ and $f(b)$ somewhere on the open interval (a, b).

In this case, since $f(a)<0<f(b)$, the theorem guarantees the existince of a $c \in[a, b]$ with $f(c)=0$.

Example 1

Prove that the equation

$$
4-x^{2}=0
$$

has a root in the interval $(1,3)$

Example 1

Prove that the equation

$$
4-x^{2}=0
$$

has a root in the interval $(1,3)$
Note that $f(x)=4-x^{2}$ is continuous everywhere, so it is also continuous on the closed interval [1,3]

Example 1

Prove that the equation

$$
4-x^{2}=0
$$

has a root in the interval $(1,3)$
Note that $f(x)=4-x^{2}$ is continuous everywhere, so it is also continuous on the closed interval [1,3]
Now note that $f(1)=4-1^{2}=3>0$ and $f(3)=4-3^{2}=-5<0$, so by the intermediate value theorem f has a root in (1,3).

Example 2

Prove that the equation

$$
1-x+\sqrt{2 x}=0
$$

has a root in the interval $(1,8)$

Example 2

Prove that the equation

$$
1-x+\sqrt{2 x}=0
$$

has a root in the interval $(1,8)$
Note that $f(x)=1-x+\sqrt{2 x}$ is continuous on $[0, \infty)$, so it is also continuous on the closed interval $[1,8]$

Example 2

Prove that the equation

$$
1-x+\sqrt{2 x}=0
$$

has a root in the interval $(1,8)$
Note that $f(x)=1-x+\sqrt{2 x}$ is continuous on $[0, \infty)$, so it is also continuous on the closed interval $[1,8]$
Now note that $f(1)=1-1+s q r t 2>0$ and
$f(8)=1-8+\sqrt{16}<0$, so f has a root in $(1,8)$.

Example 2

Let

$$
f(x)=\frac{3 x+2}{5 x-1}
$$

Example 2

Let

$$
f(x)=\frac{3 x+2}{5 x-1}
$$

As $x \rightarrow \infty, f(x) \rightarrow \frac{3}{5}$ from above.

Example 2

Let

$$
f(x)=\frac{3 x+2}{5 x-1}
$$

As $x \rightarrow \infty, f(x) \rightarrow \frac{3}{5}$ from above.
As $x \rightarrow-\infty, f(x) \rightarrow \frac{3}{5}$ from below.

Example 3

Let

$$
f(x)=2+e^{x}
$$

Example 3

Let

$$
f(x)=2+e^{x}
$$

As $x \rightarrow-\infty, f(x) \rightarrow 2$ from above.

Question 1

Find the horizontal asymptote(s) of

$$
f(x)=2+\frac{1}{x^{2}}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. f has no horizontal asymptote

Question 1

Find the horizontal asymptote(s) of

$$
f(x)=2+\frac{1}{x^{2}}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. f has no horizontal asymptote
5. $y=2$.

Question 2

Find the horizontal asymptote(s) of

$$
f(x)=3+\frac{1}{x^{2}-1}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. $y=3$
5. $y=-3$
6. f has no horizontal asymptote

Question 2

Find the horizontal asymptote(s) of

$$
f(x)=3+\frac{1}{x^{2}-1}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. $y=3$.

Question 3

Find the horizontal asymptote(s) of

$$
f(x)=\frac{2 x^{5}+7 x^{3}-15 x+10}{x^{5}-8 x^{4}+2 x^{2}+3}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. $y=3$
5. $y=-3$
6. f has no horizontal asymptote

Question 3

Find the horizontal asymptote(s) of

$$
f(x)=\frac{2 x^{5}+7 x^{3}-15 x+10}{x^{5}-8 x^{4}+2 x^{2}+3}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. f has no horizontal asymptote
5. $y=2$.
