Limits at Infinity

The notation

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

means that $f(x)$ can be made as large as we want by taking x sufficiently large.

Limits at Infinity

The notation

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

means that $f(x)$ can be made as large as we want by taking x sufficiently large.
The notation

$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

means that $f(x)$ can be made as large negative as we want by taking x sufficiently large.

Limits at Infinity

We say that the line $y=L$ is a horizontal asymptote if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

Limits at Infinity

We say that the line $y=L$ is a horizontal asymptote if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

As x becomes large in either the positive or negative direction, the graph of f approaches the horizontal line $y=L$.

Limits at Infinity

We say that the line $y=L$ is a horizontal asymptote if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

As x becomes large in either the positive or negative direction, the graph of f approaches the horizontal line $y=L$.

The graph may approach the line $y=L$ from above or below.

Example 1
Let

$$
f(x)=1+\frac{1}{x}
$$

Example 1

Let

$$
f(x)=1+\frac{1}{x}
$$

As $x \rightarrow \infty, f(x) \rightarrow 1$ from above.

Example 1

Let

$$
f(x)=1+\frac{1}{x}
$$

As $x \rightarrow \infty, f(x) \rightarrow 1$ from above.
As $x \rightarrow-\infty, f(x) \rightarrow 1$ from below.

Example 2

Let

$$
f(x)=\frac{3 x+2}{5 x-1}
$$

Example 2

Let

$$
f(x)=\frac{3 x+2}{5 x-1}
$$

As $x \rightarrow \infty, f(x) \rightarrow \frac{3}{5}$ from above.

Example 2

Let

$$
f(x)=\frac{3 x+2}{5 x-1}
$$

As $x \rightarrow \infty, f(x) \rightarrow \frac{3}{5}$ from above.
As $x \rightarrow-\infty, f(x) \rightarrow \frac{3}{5}$ from below.

Example 3

Let

$$
f(x)=2+e^{x}
$$

Example 3

Let

$$
f(x)=2+e^{x}
$$

As $x \rightarrow-\infty, f(x) \rightarrow 2$ from above.

Question 1

Find the horizontal asymptote(s) of

$$
f(x)=2+\frac{1}{x^{2}}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. f has no horizontal asymptote

Question 1

Find the horizontal asymptote(s) of

$$
f(x)=2+\frac{1}{x^{2}}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. f has no horizontal asymptote
5. $y=-2$
6. $y=-1$
7. f has no horizontal asymptote
8. $y=2$.

Question 2

Find the horizontal asymptote(s) of

$$
f(x)=3+\frac{1}{x^{2}-1}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. $y=3$
5. $y=-3$
6. f has no horizontal asymptote

Question 2

Find the horizontal asymptote(s) of

$$
f(x)=3+\frac{1}{x^{2}-1}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. $y=3$.

Question 3

Find the horizontal asymptote(s) of

$$
f(x)=\frac{2 x^{5}+7 x^{3}-15 x+10}{x^{5}-8 x^{4}+2 x^{2}+3}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. $y=3$
5. $y=-3$
6. f has no horizontal asymptote

Question 3

Find the horizontal asymptote(s) of

$$
f(x)=\frac{2 x^{5}+7 x^{3}-15 x+10}{x^{5}-8 x^{4}+2 x^{2}+3}
$$

1. $y=0$
2. $y=1$
3. $y=2$
4. f has no horizontal asymptote
5. $y=2$.
