MA125 Epsilon-Delta examples
1)

Suppose $f(x)=5 x-2$. Find $\delta>0$ such that

$$
|f(x)-3|<\frac{1}{4} \text { whenever }|x-1|<\delta
$$

Solution:

$$
|f(x)-3|=|5 x-2-3|=|5 x-5|<\frac{1}{4}
$$

This is the same as saying

$$
-\frac{1}{4}<5 x-5<\frac{1}{4}
$$

Dividing all terms by 5 gives

$$
-\frac{1}{20}<x-1<\frac{1}{20}
$$

which is equivalent to

$$
|x-1|<\frac{1}{20}=\delta
$$

2) Suppose $f(x)=5 x-2$. Prove that

$$
\lim _{x \rightarrow-1} f(x)=-7
$$

Proof: Let $\epsilon>0$ be given. We need to find a $\delta>0$ such that

$$
|f(x)-L|=|5 x-2+7|=|5 x+5|<\epsilon
$$

whenever

$$
|x-a|=|x+1|<\delta
$$

First rewrite

$$
|5 x+5|<\epsilon
$$

as

$$
-\epsilon<5 x+5<\epsilon
$$

Dividing by 5 gives

$$
-\frac{\epsilon}{5}<x+1<\frac{\epsilon}{5}
$$

which can be written as

$$
|x+1|<\frac{\epsilon}{5}=\delta
$$

so given ϵ, let $\delta=\epsilon / 5$.
3) Suppose $f(x)=3 x$. Prove that

$$
\lim _{x \rightarrow 0} f(x)=0
$$

Proof: Let $\epsilon>0$ be given. We need to find a $\delta>0$ such that

$$
|f(x)-L|=|3 x-0|=|3 x|<\epsilon
$$

whenever

$$
|x-a|=|x|<\delta
$$

First rewrite

$$
|3 x|<\epsilon
$$

as

$$
-\epsilon<3 x<\epsilon
$$

Dividing by 3 gives

$$
-\frac{\epsilon}{3}<x<\frac{\epsilon}{3}
$$

which can be written as

$$
|x|<\frac{\epsilon}{3}=\delta
$$

so given ϵ, let $\delta=\epsilon / 3$.
4) Suppose

$$
f(x)=\frac{1}{4} x+2
$$

Prove that

$$
\lim _{x \rightarrow 1} f(x)=\frac{9}{4}
$$

Proof: Let $\epsilon>0$ be given. We need to find a $\delta>0$ such that

$$
|f(x)-L|=\left|\frac{x}{4}+2-\frac{9}{4}\right|=\left|\frac{x-1}{4}\right|<\epsilon
$$

whenever

$$
|x-a|=|x-1|<\delta
$$

First rewrite

$$
\left|\frac{x-1}{4}\right|<\epsilon
$$

as

$$
-\epsilon<\frac{x-1}{4}<\epsilon
$$

Multiplying by 4 gives

$$
-4 \epsilon<x-1<4 \epsilon
$$

which can be written as

$$
|x-1|<4 \epsilon=\delta
$$

so given ϵ, let $\delta=4 \epsilon$.
5) Suppose

$$
f(x)=\pi x+1
$$

Prove that

$$
\lim _{x \rightarrow 2} f(x)=1+2 \pi
$$

Proof: Let $\epsilon>0$ be given. We need to find a $\delta>0$ such that

$$
|f(x)-L|=|\pi x+1-(2 \pi+1)|=|\pi(x-2)|<\epsilon
$$

whenever

$$
|x-a|=|x-2|<\delta
$$

First rewrite

$$
|\pi(x-2)|<\epsilon
$$

as

$$
-\epsilon<\pi(x-2)<\epsilon
$$

Dividing by π gives

$$
-\frac{\epsilon}{\pi}<x-2<\frac{\epsilon}{\pi}
$$

which can be written as

$$
|x-2|<\frac{\epsilon}{\pi}=\delta
$$

so given ϵ, let $\delta=\epsilon / \pi$.

