More Epsilon Delta Examples

Gene Quinn

Epsilon-Delta

Suppose $f(x)=7 x+4$. Find $\delta>0$ such that

$$
|f(x)-11|<1 \text { whenever }|x-1|<\delta
$$

Epsilon-Delta

Suppose $f(x)=7 x+4$. Find $\delta>0$ such that

$$
|f(x)-11|<1 \text { whenever }|x-1|<\delta
$$

Solution: We need to find a $\delta>0$ such that

$$
|f(x)-11|=|7 x+4-11|=|7 x-7|<1
$$

whenever

$$
|x-1|<\delta
$$

Epsilon-Delta

We want to manuever the expression

$$
|7 x-7|<1
$$

into an equivalent expression that looks like

$$
|x-1|<\text { something }
$$

Epsilon-Delta

We want to manuever the expression

$$
|7 x-7|<1
$$

into an equivalent expression that looks like

$$
|x-1|<\text { something }
$$

something will be the value we assign delta.

Epsilon-Delta

First note that

$$
|7 x-7|<1
$$

means the same thing as

$$
-1<7 x-7<1
$$

Epsilon-Delta

First note that

$$
|7 x-7|<1
$$

means the same thing as

$$
-1<7 x-7<1
$$

Dividing all expressions by 7 gives

$$
-\frac{1}{7}<x-1<\frac{1}{7}
$$

Epsilon-Delta

Now convert back to absolute values,

$$
-\frac{1}{7}<x-1<\frac{1}{7}
$$

means the same thing as

$$
|x-1|<\frac{1}{7}
$$

Epsilon-Delta

Now convert back to absolute values,

$$
-\frac{1}{7}<x-1<\frac{1}{7}
$$

means the same thing as

$$
|x-1|<\frac{1}{7}
$$

So, choose

$$
\delta=\frac{1}{7}
$$

Epsilon-Delta

Does this actually work?

Suppose

$$
|x-1|<\delta=\frac{1}{7}
$$

Epsilon-Delta

Does this actually work?
Suppose

$$
|x-1|<\delta=\frac{1}{7}
$$

Note that

$$
|x-1|<\frac{1}{7}
$$

means the same thing as

$$
-\frac{1}{7}<x-1<\frac{1}{7}
$$

Epsilon-Delta

Multiply all expressions in

$$
-\frac{1}{7}<x-1<\frac{1}{7}
$$

by 7 to get

$$
-1<7 x-7<1
$$

Epsilon-Delta

Multiply all expressions in

$$
-\frac{1}{7}<x-1<\frac{1}{7}
$$

by 7 to get

$$
-1<7 x-7<1
$$

Now write $7 x-7$ as $7 x+4-11$,

$$
\mid 7 x+4-11<1
$$

and this is the same as

$$
|f(x)-11|<1
$$

which is what we wanted.

Epsilon-Delta

Suppose $f(x)=7 x+4$. Prove that

$$
\lim _{x \rightarrow 1} f(x)=11
$$

Epsilon-Delta

Suppose $f(x)=7 x+4$. Prove that

$$
\lim _{x \rightarrow 1} f(x)=11
$$

Proof: Suppose $\epsilon>0$ is given. We need to find a $\delta>0$ such that

$$
|f(x)-L|=|7 x+4-11|=|7 x-7|<\epsilon
$$

whenever

$$
|x-a|=|x-1|<\delta
$$

Epsilon-Delta

We want to manuever the expression

$$
|7 x-7|<\epsilon
$$

into an equivalent expression that looks like

$$
|x-1|<\text { something }
$$

Epsilon-Delta

We want to manuever the expression

$$
|7 x-7|<\epsilon
$$

into an equivalent expression that looks like

$$
|x-1|<\text { something }
$$

something will be the value we assign delta.

Epsilon-Delta

First note that

$$
|7 x-7|<\epsilon
$$

means the same thing as

$$
-\epsilon<7 x-7<\epsilon
$$

Epsilon-Delta

First note that

$$
|7 x-7|<\epsilon
$$

means the same thing as

$$
-\epsilon<7 x-7<\epsilon
$$

Dividing all expressions by 7 gives

$$
-\frac{\epsilon}{7}<x-1<\frac{\epsilon}{7}
$$

Epsilon-Delta

Now convert back to absolute values,

$$
-\frac{\epsilon}{7}<x-1<\frac{\epsilon}{7}
$$

means the same thing as

$$
|x-1|<\frac{\epsilon}{7}
$$

Epsilon-Delta

Now convert back to absolute values,

$$
-\frac{\epsilon}{7}<x-1<\frac{\epsilon}{7}
$$

means the same thing as

$$
|x-1|<\frac{\epsilon}{7}
$$

So, choose

$$
\delta=\frac{\epsilon}{7}
$$

Epsilon-Delta

Does this actually work?

Suppose

$$
|x-1|<\delta=\frac{\epsilon}{7}
$$

Epsilon-Delta

Does this actually work?
Suppose

$$
|x-1|<\delta=\frac{\epsilon}{7}
$$

Note that

$$
|x-1|<\frac{\epsilon}{7}
$$

means the same thing as

$$
-\frac{\epsilon}{7}<x-1<\frac{\epsilon}{7}
$$

Epsilon-Delta

Multiply all expressions in

$$
-\frac{\epsilon}{7}<x-1<\frac{\epsilon}{7}
$$

by 7 to get

$$
-\epsilon<7 x-7<\epsilon
$$

Epsilon-Delta

Multiply all expressions in

$$
-\frac{\epsilon}{7}<x-1<\frac{\epsilon}{7}
$$

by 7 to get

$$
-\epsilon<7 x-7<\epsilon
$$

Now write $7 x-7$ as $7 x+4-11$,

$$
\mid 7 x+4-11<\epsilon
$$

and this is the same as

$$
|f(x)-L|<\epsilon
$$

which is what we wanted.

