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The cast:

Epsilon D. "Ed" Criterion (the hero)

Just your average Mathematician
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Epsilon-Delta
The cast:

Epsilon D. "Ed" Criterion (the hero)

Just your average Mathematician

Thomas Biltwright (A Brilliant Civil Engineer)

Designer of the bridge over the Gibraltar Straits

Dari Clay (An evil genius)

Bent on destroying the world by showing that everything we
think we know about Mathematics is wrong.
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Epsilon-Delta
The opening scene: The function room at Ed’s house. Ed is
relaxing by meditating on transcendentals.

Tom bursts into the room, in a state of near panic.
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Tom: Ed, the most horrible thing is about to happen!
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Tom bursts into the room, in a state of near panic.

Tom: Ed, the most horrible thing is about to happen!

Ed: (startled out of his tranquil state) Whoa, what’s the
matter?
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Tom: My bridge is scheduled to open tomorrow and it’s
going to fall down.
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relaxing by meditating on transcendentals.

Tom bursts into the room, in a state of near panic.

Tom: Ed, the most horrible thing is about to happen!

Ed: (startled out of his tranquil state) Whoa, what’s the
matter?

Tom: My bridge is scheduled to open tomorrow and it’s
going to fall down.

Ed: Why would it fall down? Didn’t you use calculus to
design it?
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Epsilon-Delta
The opening scene: The function room at Ed’s house. Ed is
relaxing by meditating on transcendentals.

Tom bursts into the room, in a state of near panic.

Tom: Ed, the most horrible thing is about to happen!

Ed: (startled out of his tranquil state) Whoa, what’s the
matter?

Tom: My bridge is scheduled to open tomorrow and it’s
going to fall down.

Ed: Why would it fall down? Didn’t you use calculus to
design it?

Tom: Of course I did, but I just discovered that calculus is
wrong.
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Epsilon-Delta
Ed: What do you mean calculus is wrong? That’s absurd.
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Tom: It’s true. Calculus is all about limits, and we can’t
trust limits.
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Ed: They always seem to work for me. What’s the problem?
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Ed: What do you mean calculus is wrong? That’s absurd.

Tom: It’s true. Calculus is all about limits, and we can’t
trust limits.

Ed: They always seem to work for me. What’s the problem?

Tom: My nemisis, Dari, has discovered a function that
seems to satisfy the definition of a limit I’ve always used, but
fails to converge. Now I can’t be sure of anything I’ve done.

Epsilon Delta – p. 4/25



Epsilon-Delta
Ed: What do you mean calculus is wrong? That’s absurd.

Tom: It’s true. Calculus is all about limits, and we can’t
trust limits.

Ed: They always seem to work for me. What’s the problem?

Tom: My nemisis, Dari, has discovered a function that
seems to satisfy the definition of a limit I’ve always used, but
fails to converge. Now I can’t be sure of anything I’ve done.

Ed: I’m skeptical. Tell me more about this diabolical
function. (hands Tom a marker) Here, just write on the wall,
that’s what a function room is for.
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Epsilon-Delta
Tom: It’s pure evil. She took the innocent identity
function...(writes on the wall, hesitantly at first)

f(x) = x
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function...(writes on the wall, hesitantly at first)

f(x) = x

Ed: What harm could possibly come from that?
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Tom: It’s pure evil. She took the innocent identity
function...(writes on the wall, hesitantly at first)

f(x) = x

Ed: What harm could possibly come from that?

Tom: Not much, unless you mutate it so it maps the
irrationals to one:

f(x) =

{

x if x is rational
1 if x is irrational
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Epsilon-Delta
Tom: It’s pure evil. She took the innocent identity
function...(writes on the wall, hesitantly at first)

f(x) = x

Ed: What harm could possibly come from that?

Tom: Not much, unless you mutate it so it maps the
irrationals to one:

f(x) =

{

x if x is rational
1 if x is irrational

Ed: Very clever. It’s a perfectly good function - passes the
vertical line test.
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Epsilon-Delta
Tom: You mean a perfectly evil function. Think about the
limit as x → 0. According to the definition, the limit is zero if
I can make f(x) as close as I want to zero by taking x
sufficiently close to zero.
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Tom: You mean a perfectly evil function. Think about the
limit as x → 0. According to the definition, the limit is zero if
I can make f(x) as close as I want to zero by taking x
sufficiently close to zero.

Ed: I’m getting a bad feeling about this.
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Tom: You mean a perfectly evil function. Think about the
limit as x → 0. According to the definition, the limit is zero if
I can make f(x) as close as I want to zero by taking x
sufficiently close to zero.

Ed: I’m getting a bad feeling about this.

Tom: You see, if I stick to rational values for x, I can make
f(x) as close as I like to zero by taking x sufficiently close to
zero. But if I take x irrational, the function is always 1, no
matter how close to zero I am.
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Epsilon-Delta
Tom: You mean a perfectly evil function. Think about the
limit as x → 0. According to the definition, the limit is zero if
I can make f(x) as close as I want to zero by taking x
sufficiently close to zero.

Ed: I’m getting a bad feeling about this.

Tom: You see, if I stick to rational values for x, I can make
f(x) as close as I like to zero by taking x sufficiently close to
zero. But if I take x irrational, the function is always 1, no
matter how close to zero I am.

Ed: Well, I think the spirit of the definition is that f(x) should
be close to zero for all of the x′s within a certain distance of
zero.
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Epsilon-Delta
Tom: That may be, but it’s not what it says. The bridge
opens in less than 24 hours. What are we going to do?
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opens in less than 24 hours. What are we going to do?

Ed: We’ve got to come up with a stronger definition - one
that can eliminate Dari’s evil creation.
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Tom: That may be, but it’s not what it says. The bridge
opens in less than 24 hours. What are we going to do?

Ed: We’ve got to come up with a stronger definition - one
that can eliminate Dari’s evil creation.

Tom: Yes, but how?

Ed: We can start by saying f(x) has to be close to L
whenever x is sufficiently close to a, something like

|f(x) − L| < ǫ whenever 0 < |x − a| < δ

That takes care of the loophole Dari exploited.
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Epsilon-Delta
Tom: That may be, but it’s not what it says. The bridge
opens in less than 24 hours. What are we going to do?

Ed: We’ve got to come up with a stronger definition - one
that can eliminate Dari’s evil creation.

Tom: Yes, but how?

Ed: We can start by saying f(x) has to be close to L
whenever x is sufficiently close to a, something like

|f(x) − L| < ǫ whenever 0 < |x − a| < δ

That takes care of the loophole Dari exploited.

Tom: (with a pained look) Absolute values? Why do we
have to use absolute values?
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Epsilon-Delta
Ed: It’s the usual way to measure distance on a line. Hey,
we’re trying to save the world here - just think of them as
double inequalities:

|F (x)−L| < ǫ means the same thing as −ǫ < F (x)−L < ǫ

Epsilon Delta – p. 8/25



Epsilon-Delta
Ed: It’s the usual way to measure distance on a line. Hey,
we’re trying to save the world here - just think of them as
double inequalities:

|F (x)−L| < ǫ means the same thing as −ǫ < F (x)−L < ǫ

Tom: OK, but where do you get ǫ and δ?

Epsilon Delta – p. 8/25



Epsilon-Delta
Ed: It’s the usual way to measure distance on a line. Hey,
we’re trying to save the world here - just think of them as
double inequalities:

|F (x)−L| < ǫ means the same thing as −ǫ < F (x)−L < ǫ

Tom: OK, but where do you get ǫ and δ?

Ed: From my name, of course. I deserve some credit for
this.
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we’re trying to save the world here - just think of them as
double inequalities:

|F (x)−L| < ǫ means the same thing as −ǫ < F (x)−L < ǫ

Tom: OK, but where do you get ǫ and δ?

Ed: From my name, of course. I deserve some credit for
this.

Tom: No, I meant the values of ǫ and δ.

Ed: Oh, that’s easy. I get ǫ from you and I figure out δ based
on f , ǫ and a.
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Epsilon-Delta
Ed: It’s the usual way to measure distance on a line. Hey,
we’re trying to save the world here - just think of them as
double inequalities:

|F (x)−L| < ǫ means the same thing as −ǫ < F (x)−L < ǫ

Tom: OK, but where do you get ǫ and δ?

Ed: From my name, of course. I deserve some credit for
this.

Tom: No, I meant the values of ǫ and δ.

Ed: Oh, that’s easy. I get ǫ from you and I figure out δ based
on f , ǫ and a.

Tom: You lost me.
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Epsilon-Delta
Ed: OK, lets start with something reasonable like

lim
x→2

3x + 1 = 7

Now I need a value for ǫ from you. Once I have it, I use it to
figure out a value of δ so that:

3x + 1 is within ǫ of 7

whenever

x is within δ of 2, or, more precisely,

|3x + 1 − 7| < ǫ whenever 0 < |x − 2| < δ
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Epsilon-Delta
Ed: OK, lets start with something reasonable like

lim
x→2

3x + 1 = 7

Now I need a value for ǫ from you. Once I have it, I use it to
figure out a value of δ so that:

3x + 1 is within ǫ of 7

whenever

x is within δ of 2, or, more precisely,

|3x + 1 − 7| < ǫ whenever 0 < |x − 2| < δ

Tom: How about ǫ = 1? Will that work?
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Epsilon-Delta
Ed: Well, the idea is that I have to be able to come up with a
δ that makes it work. Let’s see how I would do that given
ǫ = 1. We want to find a δ such that

|3x + 1 − 7| = |3x − 6| < 1 whenever 0 < |x − 2| < δ
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δ that makes it work. Let’s see how I would do that given
ǫ = 1. We want to find a δ such that

|3x + 1 − 7| = |3x − 6| < 1 whenever 0 < |x − 2| < δ

Tom: OK, where would you start?
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Ed: Well, the idea is that I have to be able to come up with a
δ that makes it work. Let’s see how I would do that given
ǫ = 1. We want to find a δ such that

|3x + 1 − 7| = |3x − 6| < 1 whenever 0 < |x − 2| < δ

Tom: OK, where would you start?

Ed: Start with the expression |3x − 6| < 1 and try to
manuever it into an equivalent expression that looks like
|x − 2| < something. That something will be what we call
delta.
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Epsilon-Delta
Ed: Well, the idea is that I have to be able to come up with a
δ that makes it work. Let’s see how I would do that given
ǫ = 1. We want to find a δ such that

|3x + 1 − 7| = |3x − 6| < 1 whenever 0 < |x − 2| < δ

Tom: OK, where would you start?

Ed: Start with the expression |3x − 6| < 1 and try to
manuever it into an equivalent expression that looks like
|x − 2| < something. That something will be what we call
delta.

You’re going to like the first step - we get rid of the absolute
value signs:

|3x − 6| < 1 means the same thing as − 1 < 3x − 6 < 1
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Epsilon-Delta
Ed: Now divide all terms by 3,

−1 < 3x − 6 < 1

is equivalent to

−
1

3
< x − 2 <

1

3
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Ed: Now divide all terms by 3,

−1 < 3x − 6 < 1

is equivalent to

−
1

3
< x − 2 <

1

3

Now convert back to absolute value (sorry):

−
1

3
< x − 2 <

1

3

means the same thing as

|x − 2| <
1

3
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Epsilon-Delta
Tom: So what’s delta?
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Tom: So what’s delta?

Ed: It’s 1/3. We just showed that saying

|3x + 1 − 7| < 1

means the same thing as saying

|x − 2| <
1

3

so we can say that

|f(x) − L| = |3x + 1 − 7| < 1

whenever

|x − a| = |x − 2| <
1

3
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Tom: So what does that prove?
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Tom: So what does that prove?

Ed: Only that if ǫ = 1, there is a δ, namely 1/3, such that

|3x + 1 − 7| < ǫ whenever |x − 2| < δ
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Tom: So what does that prove?

Ed: Only that if ǫ = 1, there is a δ, namely 1/3, such that

|3x + 1 − 7| < ǫ whenever |x − 2| < δ

Tom: Are we done yet?
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Epsilon-Delta
Tom: So what does that prove?

Ed: Only that if ǫ = 1, there is a δ, namely 1/3, such that

|3x + 1 − 7| < ǫ whenever |x − 2| < δ

Tom: Are we done yet?

Ed: No, we have to show that no matter what ǫ is given, we
can find a δ that makes

|3x + 1 − 7| < ǫ

whenever
|x − 2| < δ
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Tom: So I have to give you more ǫ values to try?
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Tom: So I have to give you more ǫ values to try?

Ed: Yup.
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Tom: So I have to give you more ǫ values to try?

Ed: Yup.

Tom: OK, what if ǫ = 1/10?
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Epsilon-Delta
Tom: So I have to give you more ǫ values to try?

Ed: Yup.

Tom: OK, what if ǫ = 1/10?

Ed: Like before, start with the expression |3x − 6| < 1/10
and try to manuever it into an equivalent expression that
looks like |x − 2| < something. That something will be what
we call delta.
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Epsilon-Delta
Tom: So I have to give you more ǫ values to try?

Ed: Yup.

Tom: OK, what if ǫ = 1/10?

Ed: Like before, start with the expression |3x − 6| < 1/10
and try to manuever it into an equivalent expression that
looks like |x − 2| < something. That something will be what
we call delta.

In the first step we get rid of the absolute value signs:

|3x − 6| <
1

10
means the same thing as −

1

10
< 3x − 6 <

1

10
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Epsilon-Delta
Ed: Now divide all terms by 3,

−
1

10
< 3x − 6 <

1

10

is equivalent to

−
1

30
< x − 2 <

1

30
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Ed: Now divide all terms by 3,

−
1

10
< 3x − 6 <

1

10

is equivalent to

−
1

30
< x − 2 <

1

30

Now convert back to absolute value (sorry again):

−
1

30
< x − 2 <

1

30

means the same thing as

|x − 2| <
1

30
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Epsilon-Delta
Tom: So δ is 1/30 this time?
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Tom: So δ is 1/30 this time?

Ed: Right. We have a smaller ǫ which means 3x + 1 has to
be closer to 7, so we have to take x closer to 2.

|3x + 1 − 7| <
1

10

means the same thing as saying

|x − 2| <
1

30

Epsilon Delta – p. 16/25



Epsilon-Delta
Tom: OK, so we can say that

|f(x) − L| = |3x + 1 − 7| <
1

10

whenever

|x − a| = |x − 2| <
1

30
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Tom: OK, so we can say that

|f(x) − L| = |3x + 1 − 7| <
1

10

whenever

|x − a| = |x − 2| <
1

30

Ed: Right.

Epsilon Delta – p. 17/25



Epsilon-Delta
Tom: I’m beginning to see. So are we done yet?
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Tom: I’m beginning to see. So are we done yet?

Ed: No, we have to show that we can find δ no matter what
the value of ǫ is.
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Epsilon-Delta
Tom: I’m beginning to see. So are we done yet?

Ed: No, we have to show that we can find δ no matter what
the value of ǫ is.

Tom: Isn’t that going to take the rest of our natural lives?
We seem to have two ǫ values done and infinity to go.
Remember, we only have 24 hours until the bridge opens.
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Tom: I’m beginning to see. So are we done yet?

Ed: No, we have to show that we can find δ no matter what
the value of ǫ is.

Tom: Isn’t that going to take the rest of our natural lives?
We seem to have two ǫ values done and infinity to go.
Remember, we only have 24 hours until the bridge opens.

Ed: I see your point. We can’t exhaust all of the possibilities
for ǫ. But there is an alternative.
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Tom: I’m beginning to see. So are we done yet?

Ed: No, we have to show that we can find δ no matter what
the value of ǫ is.

Tom: Isn’t that going to take the rest of our natural lives?
We seem to have two ǫ values done and infinity to go.
Remember, we only have 24 hours until the bridge opens.

Ed: I see your point. We can’t exhaust all of the possibilities
for ǫ. But there is an alternative.

Tom: What’s that?

Epsilon Delta – p. 18/25



Epsilon-Delta
Tom: I’m beginning to see. So are we done yet?

Ed: No, we have to show that we can find δ no matter what
the value of ǫ is.

Tom: Isn’t that going to take the rest of our natural lives?
We seem to have two ǫ values done and infinity to go.
Remember, we only have 24 hours until the bridge opens.

Ed: I see your point. We can’t exhaust all of the possibilities
for ǫ. But there is an alternative.

Tom: What’s that?

Ed: We’ll come up with a rule for computing a δ. Whatever
we are given for ǫ, we apply the rule, and it gives us the
value δ we need for this ǫ.
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Epsilon-Delta
Tom: I’m beginning to see. So are we done yet?

Ed: No, we have to show that we can find δ no matter what
the value of ǫ is.

Tom: Isn’t that going to take the rest of our natural lives?
We seem to have two ǫ values done and infinity to go.
Remember, we only have 24 hours until the bridge opens.

Ed: I see your point. We can’t exhaust all of the possibilities
for ǫ. But there is an alternative.

Tom: What’s that?

Ed: We’ll come up with a rule for computing a δ. Whatever
we are given for ǫ, we apply the rule, and it gives us the
value δ we need for this ǫ.

Tom: And it gives us the value δ we need for this ǫ?
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Ed: Exactly.
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Ed: Exactly.

Tom: For any positive ǫ?
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Epsilon-Delta
Ed: Exactly.

Tom: For any positive ǫ?

Ed: Yes. Think of the rule as a function that maps ǫ to a
workable δ. As long as the domain of that function is all
positive real numbers, we can say there exists a δ for any
ǫ > 0 we are given.
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Ed: Exactly.

Tom: For any positive ǫ?

Ed: Yes. Think of the rule as a function that maps ǫ to a
workable δ. As long as the domain of that function is all
positive real numbers, we can say there exists a δ for any
ǫ > 0 we are given.

Tom: So now we’re done.
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Epsilon-Delta
Ed: Exactly.

Tom: For any positive ǫ?

Ed: Yes. Think of the rule as a function that maps ǫ to a
workable δ. As long as the domain of that function is all
positive real numbers, we can say there exists a δ for any
ǫ > 0 we are given.

Tom: So now we’re done.

Ed: Yes, as soon as we find the rule.
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Epsilon-Delta
Ed: Exactly.

Tom: For any positive ǫ?

Ed: Yes. Think of the rule as a function that maps ǫ to a
workable δ. As long as the domain of that function is all
positive real numbers, we can say there exists a δ for any
ǫ > 0 we are given.

Tom: So now we’re done.

Ed: Yes, as soon as we find the rule.

Tom: Good, I was beginning think we’d never get there.

And how do we find this rule?
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Epsilon-Delta
Ed: The same way we found delta values for a specific ǫ,
except in place of the given value we just use the symbol ǫ
(which conincidentally is my first initial).
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Ed: The same way we found delta values for a specific ǫ,
except in place of the given value we just use the symbol ǫ
(which conincidentally is my first initial).

Tom: OK, that means we start with the expression
|3x − 6| < ǫ and try to manuever it into an equivalent
expression that looks like |x − 2| < something?
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Ed: The same way we found delta values for a specific ǫ,
except in place of the given value we just use the symbol ǫ
(which conincidentally is my first initial).

Tom: OK, that means we start with the expression
|3x − 6| < ǫ and try to manuever it into an equivalent
expression that looks like |x − 2| < something?

Ed: Exactly rignt, and that something will be what we call δ.
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Epsilon-Delta
Ed: The same way we found delta values for a specific ǫ,
except in place of the given value we just use the symbol ǫ
(which conincidentally is my first initial).

Tom: OK, that means we start with the expression
|3x − 6| < ǫ and try to manuever it into an equivalent
expression that looks like |x − 2| < something?

Ed: Exactly rignt, and that something will be what we call δ.

Tom: Can I do the step where we get rid of the absolute
value signs?
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Ed: The same way we found delta values for a specific ǫ,
except in place of the given value we just use the symbol ǫ
(which conincidentally is my first initial).

Tom: OK, that means we start with the expression
|3x − 6| < ǫ and try to manuever it into an equivalent
expression that looks like |x − 2| < something?

Ed: Exactly rignt, and that something will be what we call δ.

Tom: Can I do the step where we get rid of the absolute
value signs?

Ed: Sure, why not.
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Epsilon-Delta
Ed: The same way we found delta values for a specific ǫ,
except in place of the given value we just use the symbol ǫ
(which conincidentally is my first initial).

Tom: OK, that means we start with the expression
|3x − 6| < ǫ and try to manuever it into an equivalent
expression that looks like |x − 2| < something?

Ed: Exactly rignt, and that something will be what we call δ.

Tom: Can I do the step where we get rid of the absolute
value signs?

Ed: Sure, why not.

Tom: Thanks, that’s my favorite part.
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Epsilon-Delta
Tom: OK, so this time we say that

|3x − 6| < ǫ

means the same thing as

−ǫ < 3x − 6 < ǫ
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Epsilon-Delta
Tom: OK, so this time we say that

|3x − 6| < ǫ

means the same thing as

−ǫ < 3x − 6 < ǫ

Ed: How did that feel?
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Epsilon-Delta
Tom: OK, so this time we say that

|3x − 6| < ǫ

means the same thing as

−ǫ < 3x − 6 < ǫ

Ed: How did that feel?

Tom: It felt great. Now I’m going to divide each expression
by 3 to get something that contains x − 2:

−
ǫ

3
< x − 2 <

ǫ

3
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Epsilon-Delta
Ed: Good, but now it’s time to put back the absolute value
signs. I’ll spare you and do it myself.

−
ǫ

3
< x − 2 <

ǫ

3

means the same thing as

|x − 2| <
ǫ

3
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Epsilon-Delta
Ed: Good, but now it’s time to put back the absolute value
signs. I’ll spare you and do it myself.

−
ǫ

3
< x − 2 <

ǫ

3

means the same thing as

|x − 2| <
ǫ

3

Tom: Thanks! I see δ should be ǫ/3, so our rule is

δ =
ǫ

3
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Epsilon-Delta
Ed: Yes, and you can see it will give us a positive δ for any
positive ǫ, and because of the way we chose it, δ will have
the property that

|f(x) − L| = |3x + 1 − 7| < ǫ

whenever
|x − a| = |x − 2| < δ
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Epsilon-Delta
Ed: Yes, and you can see it will give us a positive δ for any
positive ǫ, and because of the way we chose it, δ will have
the property that

|f(x) − L| = |3x + 1 − 7| < ǫ

whenever
|x − a| = |x − 2| < δ

Tom: Good. Are we done now?
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Epsilon-Delta
Ed: Yes, and you can see it will give us a positive δ for any
positive ǫ, and because of the way we chose it, δ will have
the property that

|f(x) − L| = |3x + 1 − 7| < ǫ

whenever
|x − a| = |x − 2| < δ

Tom: Good. Are we done now?

Ed: Yes, for this function. But if you have a different
function, we have to do the same thing all over for that
function, and we’ll end up with a different rule.
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Epsilon-Delta
Ed: Yes, and you can see it will give us a positive δ for any
positive ǫ, and because of the way we chose it, δ will have
the property that

|f(x) − L| = |3x + 1 − 7| < ǫ

whenever
|x − a| = |x − 2| < δ

Tom: Good. Are we done now?

Ed: Yes, for this function. But if you have a different
function, we have to do the same thing all over for that
function, and we’ll end up with a different rule.

Think of it as job security.
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Epsilon-Delta
Tom: Maybe for you, but if my bridge collapses I’ll never
work again. Are we sure we’ve eliminated Dari’s evil
creation?
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Epsilon-Delta
Tom: Maybe for you, but if my bridge collapses I’ll never
work again. Are we sure we’ve eliminated Dari’s evil
creation?

Ed: Relax, it’s toast. Give me an ǫ less than one.
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Epsilon-Delta
Tom: Maybe for you, but if my bridge collapses I’ll never
work again. Are we sure we’ve eliminated Dari’s evil
creation?

Ed: Relax, it’s toast. Give me an ǫ less than one.

Tom: Try 1/2?

Ed: That will do. Now consider this: No matter how small an
interval I take around zero, it will always contain some
irrational numbers. So I will never be able to say that

|f(x) − 0| <
1

2
whenever 0 < |x − 0| < δ

no matter what δ is, because every irrational has
|f(x)− 0| = 1, which is bigger than 1/2. So, for ǫ = 1/2, there
is no δ that works, and therefore the limit does not exist.
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Epsilon-Delta
Tom: So I can trust limits again? And my bridge isn’t going
to collapse?
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Epsilon-Delta
Tom: So I can trust limits again? And my bridge isn’t going
to collapse?

Ed: That’s right, as long as they satisfy our new definition,
which I think should be named after me. How about if we
call it the ǫ − δ criterion?
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Epsilon-Delta
Tom: So I can trust limits again? And my bridge isn’t going
to collapse?

Ed: That’s right, as long as they satisfy our new definition,
which I think should be named after me. How about if we
call it the ǫ − δ criterion?

Tom: It’s a deal.

Epsilon Delta – p. 25/25
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