Epsilon Delta

Gene Quinn

Epsilon-Delta

The cast:
Epsilon D. "Ed" Criterion (the hero)
Just your average Mathematician

Epsilon-Delta

The cast:
Epsilon D. "Ed" Criterion (the hero)
Just your average Mathematician
Thomas Biltwright (A Brilliant Civil Engineer)
Designer of the bridge over the Gibraltar Straits

Epsilon-Delta

The cast:
Epsilon D. "Ed" Criterion (the hero)
Just your average Mathematician
Thomas Biltwright (A Brilliant Civil Engineer)
Designer of the bridge over the Gibraltar Straits
Dari Clay (An evil genius)
Bent on destroying the world by showing that everything we think we know about Mathematics is wrong.

Epsilon-Delta

The opening scene: The function room at Ed's house. Ed is relaxing by meditating on transcendentals.
Tom bursts into the room, in a state of near panic.

Epsilon-Delta

The opening scene: The function room at Ed's house. Ed is relaxing by meditating on transcendentals.
Tom bursts into the room, in a state of near panic.
Tom: Ed, the most horrible thing is about to happen!

Epsilon-Delta

The opening scene: The function room at Ed's house. Ed is relaxing by meditating on transcendentals.
Tom bursts into the room, in a state of near panic.
Tom: Ed, the most horrible thing is about to happen!
Ed: (startled out of his tranquil state) Whoa, what's the matter?

Epsilon-Delta

The opening scene: The function room at Ed's house. Ed is relaxing by meditating on transcendentals.
Tom bursts into the room, in a state of near panic.
Tom: Ed, the most horrible thing is about to happen!
Ed: (startled out of his tranquil state) Whoa, what's the matter?

Tom: My bridge is scheduled to open tomorrow and it's going to fall down.

Epsilon-Delta

The opening scene: The function room at Ed's house. Ed is relaxing by meditating on transcendentals.
Tom bursts into the room, in a state of near panic.
Tom: Ed, the most horrible thing is about to happen!
Ed: (startled out of his tranquil state) Whoa, what's the matter?

Tom: My bridge is scheduled to open tomorrow and it's going to fall down.
Ed: Why would it fall down? Didn't you use calculus to design it?

Epsilon-Delta

The opening scene: The function room at Ed's house. Ed is relaxing by meditating on transcendentals.
Tom bursts into the room, in a state of near panic.
Tom: Ed, the most horrible thing is about to happen!
Ed: (startled out of his tranquil state) Whoa, what's the matter?

Tom: My bridge is scheduled to open tomorrow and it's going to fall down.

Ed: Why would it fall down? Didn't you use calculus to design it?

Tom: Of course I did, but I just discovered that calculus is wrong.

Epsilon-Delta

Ed: What do you mean calculus is wrong? That's absurd.

Epsilon-Delta

Ed: What do you mean calculus is wrong? That's absurd.
Tom: It's true. Calculus is all about limits, and we can't trust limits.

Epsilon-Delta

Ed: What do you mean calculus is wrong? That's absurd.
Tom: It's true. Calculus is all about limits, and we can't trust limits.

Ed: They always seem to work for me. What's the problem?

Epsilon-Delta

Ed: What do you mean calculus is wrong? That's absurd.
Tom: It's true. Calculus is all about limits, and we can't trust limits.

Ed: They always seem to work for me. What's the problem?
Tom: My nemisis, Dari, has discovered a function that seems to satisfy the definition of a limit l've always used, but fails to converge. Now I can't be sure of anything l've done.

Epsilon-Delta

Ed: What do you mean calculus is wrong? That's absurd.
Tom: It's true. Calculus is all about limits, and we can't trust limits.

Ed: They always seem to work for me. What's the problem?
Tom: My nemisis, Dari, has discovered a function that seems to satisfy the definition of a limit l've always used, but fails to converge. Now I can't be sure of anything l've done.

Ed: I'm skeptical. Tell me more about this diabolical function. (hands Tom a marker) Here, just write on the wall, that's what a function room is for.

Epsilon-Delta

Tom: It's pure evil. She took the innocent identity function...(writes on the wall, hesitantly at first)

$$
f(x)=x
$$

Epsilon-Delta

Tom: It's pure evil. She took the innocent identity function...(writes on the wall, hesitantly at first)

$$
f(x)=x
$$

Ed: What harm could possibly come from that?

Epsilon-Delta

Tom: It's pure evil. She took the innocent identity function...(writes on the wall, hesitantly at first)

$$
f(x)=x
$$

Ed: What harm could possibly come from that?
Tom: Not much, unless you mutate it so it maps the irrationals to one:

$$
f(x)=\left\{\begin{array}{llll}
x & \text { if } & x & \text { is rational } \\
1 & \text { if } & x & \text { is irrational }
\end{array}\right.
$$

Epsilon-Delta

Tom: It's pure evil. She took the innocent identity function...(writes on the wall, hesitantly at first)

$$
f(x)=x
$$

Ed: What harm could possibly come from that?
Tom: Not much, unless you mutate it so it maps the irrationals to one:

$$
f(x)=\left\{\begin{array}{llll}
x & \text { if } & x & \text { is rational } \\
1 & \text { if } & x & \text { is irrational }
\end{array}\right.
$$

Ed: Very clever. It's a perfectly good function - passes the vertical line test.

Epsilon-Delta

Tom: You mean a perfectly evil function. Think about the limit as $x \rightarrow 0$. According to the definition, the limit is zero if I can make $f(x)$ as close as I want to zero by taking x sufficiently close to zero.

Epsilon-Delta

Tom: You mean a perfectly evil function. Think about the limit as $x \rightarrow 0$. According to the definition, the limit is zero if I can make $f(x)$ as close as I want to zero by taking x sufficiently close to zero.

Ed: I'm getting a bad feeling about this.

Epsilon-Delta

Tom: You mean a perfectly evil function. Think about the limit as $x \rightarrow 0$. According to the definition, the limit is zero if I can make $f(x)$ as close as I want to zero by taking x sufficiently close to zero.

Ed: I'm getting a bad feeling about this.
Tom: You see, if I stick to rational values for x, I can make $f(x)$ as close as I like to zero by taking x sufficiently close to zero. But if I take x irrational, the function is always 1 , no matter how close to zero I am.

Epsilon-Delta

Tom: You mean a perfectly evil function. Think about the limit as $x \rightarrow 0$. According to the definition, the limit is zero if I can make $f(x)$ as close as I want to zero by taking x sufficiently close to zero.

Ed: I'm getting a bad feeling about this.
Tom: You see, if I stick to rational values for x, I can make $f(x)$ as close as I like to zero by taking x sufficiently close to zero. But if I take x irrational, the function is always 1 , no matter how close to zero I am.

Ed: Well, I think the spirit of the definition is that $f(x)$ should be close to zero for all of the $x^{\prime} s$ within a certain distance of zero.

Epsilon-Delta

Tom: That may be, but it's not what it says. The bridge opens in less than 24 hours. What are we going to do?

Epsilon-Delta

Tom: That may be, but it's not what it says. The bridge opens in less than 24 hours. What are we going to do?

Ed: We've got to come up with a stronger definition - one that can eliminate Dari's evil creation.

Epsilon-Delta

Tom: That may be, but it's not what it says. The bridge opens in less than 24 hours. What are we going to do?

Ed: We've got to come up with a stronger definition - one that can eliminate Dari's evil creation.

Tom: Yes, but how?

Epsilon-Delta

Tom: That may be, but it's not what it says. The bridge opens in less than 24 hours. What are we going to do?

Ed: We've got to come up with a stronger definition - one that can eliminate Dari's evil creation.

Tom: Yes, but how?
Ed: We can start by saying $f(x)$ has to be close to L whenever x is sufficiently close to a, something like

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<|x-a|<\delta
$$

That takes care of the loophole Dari exploited.

Epsilon-Delta

Tom: That may be, but it's not what it says. The bridge opens in less than 24 hours. What are we going to do?

Ed: We've got to come up with a stronger definition - one that can eliminate Dari's evil creation.

Tom: Yes, but how?
Ed: We can start by saying $f(x)$ has to be close to L whenever x is sufficiently close to a, something like

$$
|f(x)-L|<\epsilon \quad \text { whenever } \quad 0<|x-a|<\delta
$$

That takes care of the loophole Dari exploited.
Tom: (with a pained look) Absolute values? Why do we have to use absolute values?

Epsilon-Delta

Ed: It's the usual way to measure distance on a line. Hey, we're trying to save the world here - just think of them as double inequalities:
$|F(x)-L|<\epsilon \quad$ means the same thing as $\quad-\epsilon<F(x)-L<\epsilon$

Epsilon-Delta

Ed: It's the usual way to measure distance on a line. Hey, we're trying to save the world here - just think of them as double inequalities:
$|F(x)-L|<\epsilon \quad$ means the same thing as $\quad-\epsilon<F(x)-L<\epsilon$
Tom: OK, but where do you get ϵ and δ ?

Epsilon-Delta

Ed: It's the usual way to measure distance on a line. Hey, we're trying to save the world here - just think of them as double inequalities:
$|F(x)-L|<\epsilon \quad$ means the same thing as $\quad-\epsilon<F(x)-L<\epsilon$
Tom: OK, but where do you get ϵ and δ ?
Ed: From my name, of course. I deserve some credit for this.

Epsilon-Delta

Ed: It's the usual way to measure distance on a line. Hey, we're trying to save the world here - just think of them as double inequalities:
$|F(x)-L|<\epsilon \quad$ means the same thing as $\quad-\epsilon<F(x)-L<\epsilon$
Tom: OK, but where do you get ϵ and δ ?
Ed: From my name, of course. I deserve some credit for this.

Tom: No, I meant the values of ϵ and δ.

Epsilon-Delta

Ed: It's the usual way to measure distance on a line. Hey, we're trying to save the world here - just think of them as double inequalities:
$|F(x)-L|<\epsilon \quad$ means the same thing as $\quad-\epsilon<F(x)-L<\epsilon$
Tom: OK, but where do you get ϵ and δ ?
Ed: From my name, of course. I deserve some credit for this.

Tom: No, I meant the values of ϵ and δ.
Ed: Oh, that's easy. I get ϵ from you and I figure out δ based on f, ϵ and a.

Epsilon-Delta

Ed: It's the usual way to measure distance on a line. Hey, we're trying to save the world here - just think of them as double inequalities:
$|F(x)-L|<\epsilon \quad$ means the same thing as $\quad-\epsilon<F(x)-L<\epsilon$
Tom: OK, but where do you get ϵ and δ ?
Ed: From my name, of course. I deserve some credit for this.

Tom: No, I meant the values of ϵ and δ.
Ed: Oh, that's easy. I get ϵ from you and I figure out δ based on f, ϵ and a.

Tom: You lost me.

Epsilon-Delta

Ed: OK, lets start with something reasonable like

$$
\lim _{x \rightarrow 2} 3 x+1=7
$$

Now I need a value for ϵ from you. Once I have it, I use it to figure out a value of δ so that:
$3 x+1$ is within ϵ of 7
whenever
x is within δ of 2 , or, more precisely,

$$
|3 x+1-7|<\epsilon \quad \text { whenever } \quad 0<|x-2|<\delta
$$

Epsilon-Delta

Ed: OK, lets start with something reasonable like

$$
\lim _{x \rightarrow 2} 3 x+1=7
$$

Now I need a value for ϵ from you. Once I have it, I use it to figure out a value of δ so that:
$3 x+1$ is within ϵ of 7
whenever
x is within δ of 2 , or, more precisely,

$$
|3 x+1-7|<\epsilon \quad \text { whenever } \quad 0<|x-2|<\delta
$$

Tom: How about $\epsilon=1$? Will that work?

Epsilon-Delta

Ed: Well, the idea is that I have to be able to come up with a δ that makes it work. Let's see how I would do that given $\epsilon=1$. We want to find a δ such that

$$
|3 x+1-7|=|3 x-6|<1 \quad \text { whenever } \quad 0<|x-2|<\delta
$$

Epsilon-Delta

Ed: Well, the idea is that I have to be able to come up with a δ that makes it work. Let's see how I would do that given $\epsilon=1$. We want to find a δ such that

$$
|3 x+1-7|=|3 x-6|<1 \quad \text { whenever } \quad 0<|x-2|<\delta
$$

Tom: OK, where would you start?

Epsilon-Delta

Ed: Well, the idea is that I have to be able to come up with a δ that makes it work. Let's see how I would do that given $\epsilon=1$. We want to find a δ such that

$$
|3 x+1-7|=|3 x-6|<1 \quad \text { whenever } \quad 0<|x-2|<\delta
$$

Tom: OK, where would you start?
Ed: Start with the expression $|3 x-6|<1$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something. That something will be what we call delta.

Epsilon-Delta

Ed: Well, the idea is that I have to be able to come up with a δ that makes it work. Let's see how I would do that given $\epsilon=1$. We want to find a δ such that

$$
|3 x+1-7|=|3 x-6|<1 \quad \text { whenever } \quad 0<|x-2|<\delta
$$

Tom: OK, where would you start?
Ed: Start with the expression $|3 x-6|<1$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something. That something will be what we call delta.
You're going to like the first step - we get rid of the absolute value signs:
$|3 x-6|<1$ means the same thing as $-1<3 x-6<1$

Epsilon-Delta

Ed: Now divide all terms by 3 ,

$$
-1<3 x-6<1
$$

is equivalent to

$$
-\frac{1}{3}<x-2<\frac{1}{3}
$$

Epsilon-Delta

Ed: Now divide all terms by 3,

$$
-1<3 x-6<1
$$

is equivalent to

$$
-\frac{1}{3}<x-2<\frac{1}{3}
$$

Now convert back to absolute value (sorry):

$$
-\frac{1}{3}<x-2<\frac{1}{3}
$$

means the same thing as

$$
|x-2|<\frac{1}{3}
$$

Epsilon-Delta

Tom: So what's delta?

Epsilon-Delta

Tom: So what's delta?
Ed: It's $1 / 3$. We just showed that saying

$$
|3 x+1-7|<1
$$

means the same thing as saying

$$
|x-2|<\frac{1}{3}
$$

so we can say that

$$
|f(x)-L|=|3 x+1-7|<1
$$

whenever

$$
|x-a|=|x-2|<\frac{1}{3}
$$

Epsilon-Delta

Tom: So what does that prove?

Epsilon-Delta

Tom: So what does that prove?
Ed: Only that if $\epsilon=1$, there is a δ, namely $1 / 3$, such that

$$
|3 x+1-7|<\epsilon \text { whenever }|x-2|<\delta
$$

Epsilon-Delta

Tom: So what does that prove?
Ed: Only that if $\epsilon=1$, there is a δ, namely $1 / 3$, such that

$$
|3 x+1-7|<\epsilon \text { whenever }|x-2|<\delta
$$

Tom: Are we done yet?

Epsilon-Delta

Tom: So what does that prove?
Ed: Only that if $\epsilon=1$, there is a δ, namely $1 / 3$, such that

$$
|3 x+1-7|<\epsilon \text { whenever }|x-2|<\delta
$$

Tom: Are we done yet?
Ed: No, we have to show that no matter what ϵ is given, we can find a δ that makes

$$
|3 x+1-7|<\epsilon
$$

whenever

$$
|x-2|<\delta
$$

Epsilon-Delta

Tom: So I have to give you more ϵ values to try?

Epsilon-Delta

Tom: So I have to give you more ϵ values to try?
Ed: Yup.

Epsilon-Delta

Tom: So I have to give you more ϵ values to try?
Ed: Yup.
Tom: OK, what if $\epsilon=1 / 10$?

Epsilon-Delta

Tom: So I have to give you more ϵ values to try?
Ed: Yup.
Tom: OK, what if $\epsilon=1 / 10$?
Ed: Like before, start with the expression $|3 x-6|<1 / 10$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something. That something will be what we call delta.

Epsilon-Delta

Tom: So I have to give you more ϵ values to try?
Ed: Yup.
Tom: OK, what if $\epsilon=1 / 10$?
Ed: Like before, start with the expression $|3 x-6|<1 / 10$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something. That something will be what we call delta.
In the first step we get rid of the absolute value signs:
$|3 x-6|<\frac{1}{10}$ means the same thing as $-\frac{1}{10}<3 x-6<\frac{1}{10}$

Epsilon-Delta

Ed: Now divide all terms by 3,

$$
-\frac{1}{10}<3 x-6<\frac{1}{10}
$$

is equivalent to

$$
-\frac{1}{30}<x-2<\frac{1}{30}
$$

Epsilon-Delta

Ed: Now divide all terms by 3,

$$
-\frac{1}{10}<3 x-6<\frac{1}{10}
$$

is equivalent to

$$
-\frac{1}{30}<x-2<\frac{1}{30}
$$

Now convert back to absolute value (sorry again):

$$
-\frac{1}{30}<x-2<\frac{1}{30}
$$

means the same thing as

$$
|x-2|<\frac{1}{30}
$$

Epsilon-Delta

Tom: So δ is $1 / 30$ this time?

Epsilon-Delta

Tom: So δ is $1 / 30$ this time?
Ed: Right. We have a smaller ϵ which means $3 x+1$ has to be closer to 7 , so we have to take x closer to 2 .

$$
|3 x+1-7|<\frac{1}{10}
$$

means the same thing as saying

$$
|x-2|<\frac{1}{30}
$$

Epsilon-Delta

Tom: OK, so we can say that

$$
|f(x)-L|=|3 x+1-7|<\frac{1}{10}
$$

whenever

$$
|x-a|=|x-2|<\frac{1}{30}
$$

Epsilon-Delta

Tom: OK, so we can say that

$$
|f(x)-L|=|3 x+1-7|<\frac{1}{10}
$$

whenever

$$
|x-a|=|x-2|<\frac{1}{30}
$$

Ed: Right.

Epsilon-Delta

Tom: I'm beginning to see. So are we done yet?

Epsilon-Delta

Tom: I'm beginning to see. So are we done yet?
Ed: No, we have to show that we can find δ no matter what the value of ϵ is.

Epsilon-Delta

Tom: I'm beginning to see. So are we done yet?
Ed: No, we have to show that we can find δ no matter what the value of ϵ is.
Tom: Isn't that going to take the rest of our natural lives? We seem to have two ϵ values done and infinity to go. Remember, we only have 24 hours until the bridge opens.

Epsilon-Delta

Tom: I'm beginning to see. So are we done yet?
Ed: No, we have to show that we can find δ no matter what the value of ϵ is.

Tom: Isn't that going to take the rest of our natural lives? We seem to have two ϵ values done and infinity to go. Remember, we only have 24 hours until the bridge opens.
Ed: I see your point. We can't exhaust all of the possibilities for ϵ. But there is an alternative.

Epsilon-Delta

Tom: I'm beginning to see. So are we done yet?
Ed: No, we have to show that we can find δ no matter what the value of ϵ is.

Tom: Isn't that going to take the rest of our natural lives? We seem to have two ϵ values done and infinity to go. Remember, we only have 24 hours until the bridge opens.
Ed: I see your point. We can't exhaust all of the possibilities for ϵ. But there is an alternative.
Tom: What's that?

Epsilon-Delta

Tom: I'm beginning to see. So are we done yet?
Ed: No, we have to show that we can find δ no matter what the value of ϵ is.

Tom: Isn't that going to take the rest of our natural lives? We seem to have two ϵ values done and infinity to go. Remember, we only have 24 hours until the bridge opens.
Ed: I see your point. We can't exhaust all of the possibilities for ϵ. But there is an alternative.
Tom: What's that?
Ed: We'll come up with a rule for computing a δ. Whatever we are given for ϵ, we apply the rule, and it gives us the value δ we need for this ϵ.

Epsilon-Delta

Tom: I'm beginning to see. So are we done yet?
Ed: No, we have to show that we can find δ no matter what the value of ϵ is.

Tom: Isn't that going to take the rest of our natural lives? We seem to have two ϵ values done and infinity to go. Remember, we only have 24 hours until the bridge opens.
Ed: I see your point. We can't exhaust all of the possibilities for ϵ. But there is an alternative.
Tom: What's that?
Ed: We'll come up with a rule for computing a δ. Whatever we are given for ϵ, we apply the rule, and it gives us the value δ we need for this ϵ.
Tom: And it gives us the value δ we need for this ϵ ?

Epsilon-Delta

Ed: Exactly.

Epsilon-Delta

Ed: Exactly.
Tom: For any positive ϵ ?

Epsilon-Delta

Ed: Exactly.
Tom: For any positive ϵ ?
Ed: Yes. Think of the rule as a function that maps ϵ to a workable δ. As long as the domain of that function is all positive real numbers, we can say there exists a δ for any $\epsilon>0$ we are given.

Epsilon-Delta

Ed: Exactly.
Tom: For any positive ϵ ?
Ed: Yes. Think of the rule as a function that maps ϵ to a workable δ. As long as the domain of that function is all positive real numbers, we can say there exists a δ for any $\epsilon>0$ we are given.
Tom: So now we're done.

Epsilon-Delta

Ed: Exactly.
Tom: For any positive ϵ ?
Ed: Yes. Think of the rule as a function that maps ϵ to a workable δ. As long as the domain of that function is all positive real numbers, we can say there exists a δ for any $\epsilon>0$ we are given.
Tom: So now we're done.
Ed: Yes, as soon as we find the rule.

Epsilon-Delta

Ed: Exactly.
Tom: For any positive ϵ ?
Ed: Yes. Think of the rule as a function that maps ϵ to a workable δ. As long as the domain of that function is all positive real numbers, we can say there exists a δ for any $\epsilon>0$ we are given.
Tom: So now we're done.
Ed: Yes, as soon as we find the rule.
Tom: Good, I was beginning think we'd never get there. And how do we find this rule?

Epsilon-Delta

Ed: The same way we found delta values for a specific ϵ, except in place of the given value we just use the symbol ϵ (which conincidentally is my first initial).

Epsilon-Delta

Ed: The same way we found delta values for a specific ϵ, except in place of the given value we just use the symbol ϵ (which conincidentally is my first initial).
Tom: OK, that means we start with the expression $|3 x-6|<\epsilon$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something?

Epsilon-Delta

Ed: The same way we found delta values for a specific ϵ, except in place of the given value we just use the symbol ϵ (which conincidentally is my first initial).
Tom: OK, that means we start with the expression $|3 x-6|<\epsilon$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something?
Ed: Exactly rignt, and that something will be what we call δ.

Epsilon-Delta

Ed: The same way we found delta values for a specific ϵ, except in place of the given value we just use the symbol ϵ (which conincidentally is my first initial).
Tom: OK, that means we start with the expression $|3 x-6|<\epsilon$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something?
Ed: Exactly rignt, and that something will be what we call δ.
Tom: Can I do the step where we get rid of the absolute value signs?

Epsilon-Delta

Ed: The same way we found delta values for a specific ϵ, except in place of the given value we just use the symbol ϵ (which conincidentally is my first initial).
Tom: OK, that means we start with the expression $|3 x-6|<\epsilon$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something?
Ed: Exactly rignt, and that something will be what we call δ.
Tom: Can I do the step where we get rid of the absolute value signs?
Ed: Sure, why not.

Epsilon-Delta

Ed: The same way we found delta values for a specific ϵ, except in place of the given value we just use the symbol ϵ (which conincidentally is my first initial).
Tom: OK, that means we start with the expression $|3 x-6|<\epsilon$ and try to manuever it into an equivalent expression that looks like $|x-2|<$ something?
Ed: Exactly rignt, and that something will be what we call δ.
Tom: Can I do the step where we get rid of the absolute value signs?
Ed: Sure, why not.
Tom: Thanks, that's my favorite part.

Epsilon-Delta

Tom: OK, so this time we say that

$$
|3 x-6|<\epsilon
$$

means the same thing as

$$
-\epsilon<3 x-6<\epsilon
$$

Epsilon-Delta

Tom: OK, so this time we say that

$$
|3 x-6|<\epsilon
$$

means the same thing as

$$
-\epsilon<3 x-6<\epsilon
$$

Ed: How did that feel?

Epsilon-Delta

Tom: OK, so this time we say that

$$
|3 x-6|<\epsilon
$$

means the same thing as

$$
-\epsilon<3 x-6<\epsilon
$$

Ed: How did that feel?
Tom: It felt great. Now l'm going to divide each expression by 3 to get something that contains $x-2$:

$$
-\frac{\epsilon}{3}<x-2<\frac{\epsilon}{3}
$$

Epsilon-Delta

Ed: Good, but now it's time to put back the absolute value signs. l'll spare you and do it myself.

$$
-\frac{\epsilon}{3}<x-2<\frac{\epsilon}{3}
$$

means the same thing as

$$
|x-2|<\frac{\epsilon}{3}
$$

Epsilon-Delta

Ed: Good, but now it's time to put back the absolute value signs. l'll spare you and do it myself.

$$
-\frac{\epsilon}{3}<x-2<\frac{\epsilon}{3}
$$

means the same thing as

$$
|x-2|<\frac{\epsilon}{3}
$$

Tom: Thanks! I see δ should be $\epsilon / 3$, so our rule is

$$
\delta=\frac{\epsilon}{3}
$$

Epsilon-Delta

Ed: Yes, and you can see it will give us a positive δ for any positive ϵ, and because of the way we chose it, δ will have the property that

$$
|f(x)-L|=|3 x+1-7|<\epsilon
$$

whenever

$$
|x-a|=|x-2|<\delta
$$

Epsilon-Delta

Ed: Yes, and you can see it will give us a positive δ for any positive ϵ, and because of the way we chose it, δ will have the property that

$$
|f(x)-L|=|3 x+1-7|<\epsilon
$$

whenever

$$
|x-a|=|x-2|<\delta
$$

Tom: Good. Are we done now?

Epsilon-Delta

Ed: Yes, and you can see it will give us a positive δ for any positive ϵ, and because of the way we chose it, δ will have the property that

$$
|f(x)-L|=|3 x+1-7|<\epsilon
$$

whenever

$$
|x-a|=|x-2|<\delta
$$

Tom: Good. Are we done now?
Ed: Yes, for this function. But if you have a different function, we have to do the same thing all over for that function, and we'll end up with a different rule.

Epsilon-Delta

Ed: Yes, and you can see it will give us a positive δ for any positive ϵ, and because of the way we chose it, δ will have the property that

$$
|f(x)-L|=|3 x+1-7|<\epsilon
$$

whenever

$$
|x-a|=|x-2|<\delta
$$

Tom: Good. Are we done now?
Ed: Yes, for this function. But if you have a different function, we have to do the same thing all over for that function, and we'll end up with a different rule.
Think of it as job security.

Epsilon-Delta

Tom: Maybe for you, but if my bridge collapses I'll never work again. Are we sure we've eliminated Dari's evil creation?

Epsilon-Delta

Tom: Maybe for you, but if my bridge collapses I'll never work again. Are we sure we've eliminated Dari's evil creation?
Ed: Relax, it's toast. Give me an ϵ less than one.

Epsilon-Delta

Tom: Maybe for you, but if my bridge collapses I'll never work again. Are we sure we've eliminated Dari's evil creation?
Ed: Relax, it's toast. Give me an ϵ less than one.
Tom: Try $1 / 2$?
Ed: That will do. Now consider this: No matter how small an interval I take around zero, it will always contain some irrational numbers. So I will never be able to say that

$$
|f(x)-0|<\frac{1}{2} \quad \text { whenever } \quad 0<|x-0|<\delta
$$

no matter what δ is, because every irrational has
$|f(x)-0|=1$, which is bigger than $1 / 2$. So, for $\epsilon=1 / 2$, there is no δ that works, and therefore the limit does not exist.

Epsilon-Delta

Tom: So I can trust limits again? And my bridge isn't going to collapse?

Epsilon-Delta

Tom: So I can trust limits again? And my bridge isn't going to collapse?
Ed: That's right, as long as they satisfy our new definition, which I think should be named after me. How about if we call it the $\epsilon-\delta$ criterion?

Epsilon-Delta

Tom: So I can trust limits again? And my bridge isn't going to collapse?
Ed: That's right, as long as they satisfy our new definition, which I think should be named after me. How about if we call it the $\epsilon-\delta$ criterion?

Tom: It's a deal.

