The Derivative as a Function

Because the letter we use to represent the independent variable does not matter, replacing a by x in the definition of the derivative of a function $f(x)$ gives

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { if the limit exists }
$$

The Derivative as a Function

Because the letter we use to represent the independent variable does not matter, replacing a by x in the definition of the derivative of a function $f(x)$ gives

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { if the limit exists }
$$

Considered as a function, the derivative $f^{\prime}(x)$ has a domain and range like any other function.

The Derivative as a Function

Because the letter we use to represent the independent variable does not matter, replacing a by x in the definition of the derivative of a function $f(x)$ gives

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { if the limit exists }
$$

Considered as a function, the derivative $f^{\prime}(x)$ has a domain and range like any other function.
The domain of the derivative f^{\prime} may be the same as the domain of f or smaller, but cannot be larger.

The Derivative as a Function

The reason is that if f is differentiable at a, f must be continuous at a.

The Derivative as a Function

The reason is that if f is differentiable at a, f must be continuous at a.
So, f cannot be differentiable anywhere it is not continuous.

The Derivative as a Function

The reason is that if f is differentiable at a, f must be continuous at a.
So, f cannot be differentiable anywhere it is not continuous.
The converse is not true, a function can be continuous at $x=a$ without being differentiable there.

The Derivative as a Function

The reason is that if f is differentiable at a, f must be continuous at a.
So, f cannot be differentiable anywhere it is not continuous.
The converse is not true, a function can be continuous at $x=a$ without being differentiable there.
A good example is $y=|x|$.

The Derivative as a Function

The reason is that if f is differentiable at a, f must be continuous at a.
So, f cannot be differentiable anywhere it is not continuous.
The converse is not true, a function can be continuous at $x=a$ without being differentiable there.
A good example is $y=|x|$.
A continuous function fails to be differentiable anywhere it has a sharp corner, or a vertical tangent.

Example 1

Find the derivative of $f(x)=\sqrt{x-1}$. Also find the domains of f and f^{\prime}.

Example 1

Find the derivative of $f(x)=\sqrt{x-1}$. Also find the domains of f and f^{\prime}.
We cannot have a negative number under the square root sign and get a real number, so the domain of f is $[1, \infty)$.

Example 1

Find the derivative of $f(x)=\sqrt{x-1}$. Also find the domains of f and f^{\prime}.
We cannot have a negative number under the square root sign and get a real number, so the domain of f is $[1, \infty)$.
To compute the derivative, consider

$$
\lim _{x \rightarrow a} \frac{\sqrt{x-1}-\sqrt{a-1}}{x-a}
$$

Example 1

Find the derivative of $f(x)=\sqrt{x-1}$. Also find the domains of f and f^{\prime}.
We cannot have a negative number under the square root sign and get a real number, so the domain of f is $[1, \infty)$.
To compute the derivative, consider

$$
\lim _{x \rightarrow a} \frac{\sqrt{x-1}-\sqrt{a-1}}{x-a}
$$

as usual we make use of the conjugate technique:

$$
\lim _{x \rightarrow a} \frac{\sqrt{x-1}-\sqrt{a-1}}{x-a}\left(\frac{\sqrt{x-1}+\sqrt{a-1}}{\sqrt{x-1}+\sqrt{a-1}}\right)
$$

Example 1

The expression simplifies to

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{1}{\sqrt{x-1}+\sqrt{a-1}}=\frac{1}{2 \sqrt{a-1}}
$$

Example 1

The expression simplifies to

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{1}{\sqrt{x-1}+\sqrt{a-1}}=\frac{1}{2 \sqrt{a-1}}
$$

The domain of f^{\prime} is $(1, \infty)$.

Example 1

The expression simplifies to

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{1}{\sqrt{x-1}+\sqrt{a-1}}=\frac{1}{2 \sqrt{a-1}}
$$

The domain of f^{\prime} is $(1, \infty)$.
We have to exclude 1 , although it is in the domain of f.

The Second Derivative

If we regard the derivative f^{\prime} as a function in its own right, there is no reason why we cannot repeat the process of finding the derivative, except this time starting with f^{\prime} :

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \text { if the limit exists }
$$

The Second Derivative

If we regard the derivative f^{\prime} as a function in its own right, there is no reason why we cannot repeat the process of finding the derivative, except this time starting with f^{\prime} :

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \quad \text { if the limit exists }
$$

The second derivative may be regarded as the instantaneous rate of change of the slope of the tangent to the graph of f.

The Second Derivative

If we regard the derivative f^{\prime} as a function in its own right, there is no reason why we cannot repeat the process of finding the derivative, except this time starting with f^{\prime} :

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \quad \text { if the limit exists }
$$

The second derivative may be regarded as the instantaneous rate of change of the slope of the tangent to the graph of f.
If the original function f represents position, then f^{\prime} represents (instantaneous) velocity.

The Second Derivative

If we regard the derivative f^{\prime} as a function in its own right, there is no reason why we cannot repeat the process of finding the derivative, except this time starting with f^{\prime} :

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \quad \text { if the limit exists }
$$

The second derivative may be regarded as the instantaneous rate of change of the slope of the tangent to the graph of f.
If the original function f represents position, then f^{\prime} represents (instantaneous) velocity.
In this case $f^{\prime \prime}$ represents (instantaneous) acceleration.

The Second Derivative

We have seen that if $f(x)=\sqrt{x}$, then the derivative is

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

The Second Derivative

We have seen that if $f(x)=\sqrt{x}$, then the derivative is

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

The second derivative is

$$
f^{\prime \prime}(x)=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{1}{2 \sqrt{x}}-\frac{1}{2 \sqrt{a}}}{x-a}
$$

The Second Derivative

We have seen that if $f(x)=\sqrt{x}$, then the derivative is

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}
$$

The second derivative is

$$
\begin{aligned}
& f^{\prime \prime}(x)=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{1}{2 \sqrt{x}}-\frac{1}{2 \sqrt{a}}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\frac{2(\sqrt{a}-\sqrt{x})}{2 \sqrt{x} 2 \sqrt{a}}}{x-a}=\lim _{x \rightarrow a} \frac{\frac{\sqrt{a}-\sqrt{x}}{2 \sqrt{x} \sqrt{a}}}{x-a}\left(\frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}\right)
\end{aligned}
$$

The Second Derivative

This simplifies to

$$
f^{\prime \prime}(a)=\lim _{x \rightarrow a}=\frac{-1}{2 \sqrt{x} \sqrt{a}(\sqrt{x}+\sqrt{a})}=\frac{-1}{4(\sqrt{a})^{3}}
$$

Example 2

An object is dropped from a helicopter. The distance from the ground to the object t seconds after it is dropped is given by

$$
f(t)=4000-16 t^{2}
$$

Find the instantaneous acceleration at $t=2$.

Example 2

An object is dropped from a helicopter. The distance from the ground to the object t seconds after it is dropped is given by

$$
f(t)=4000-16 t^{2}
$$

Find the instantaneous acceleration at $t=2$.
We need to find the first derivative, which we can write as

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{4000-16 t^{2}-\left(4000-16 a^{2}\right)}{x-a}
$$

Example 2

An object is dropped from a helicopter. The distance from the ground to the object t seconds after it is dropped is given by

$$
f(t)=4000-16 t^{2}
$$

Find the instantaneous acceleration at $t=2$.
We need to find the first derivative, which we can write as

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{4000-16 t^{2}-\left(4000-16 a^{2}\right)}{x-a}
$$

This simplifies to

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{-16\left(x^{2}-a^{2}\right)}{x-a}=\lim _{x \rightarrow a}-16(x+a)=-32 a
$$

Example 2

Now we find the instantaneous acceleration, which is the second derivative

$$
f^{\prime \prime}(a)=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)}{x-a}=\lim _{x \rightarrow a} \frac{-32 x-(-32 a)}{x-a}
$$

Example 2

Now we find the instantaneous acceleration, which is the second derivative

$$
f^{\prime \prime}(a)=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)}{x-a}=\lim _{x \rightarrow a} \frac{-32 x-(-32 a)}{x-a}
$$

This simplifies to

$$
f^{\prime \prime}(a)=\lim _{x \rightarrow a} \frac{-32(x-a)}{x-a}=\lim _{x \rightarrow a}-32=-32
$$

Example 2

Now we find the instantaneous acceleration, which is the second derivative

$$
f^{\prime \prime}(a)=\lim _{x \rightarrow a} \frac{f^{\prime}(x)-f^{\prime}(a)}{x-a}=\lim _{x \rightarrow a} \frac{-32 x-(-32 a)}{x-a}
$$

This simplifies to

$$
f^{\prime \prime}(a)=\lim _{x \rightarrow a} \frac{-32(x-a)}{x-a}=\lim _{x \rightarrow a}-32=-32
$$

So the instantaneous acceleration at time t is given by $A(t)=-32$, that is, the constant function whose value is
-32 for every value of t.

