
The Derivative as a Function
Because the letter we use to represent the independent
variable does not matter, replacing a by x in the definition of
the derivative of a function f(x) gives

f ′(x) = lim
h→0

f(x + h) − f(x)

h
if the limit exists
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the derivative of a function f(x) gives

f ′(x) = lim
h→0

f(x + h) − f(x)

h
if the limit exists

Considered as a function, the derivative f ′(x) has a domain
and range like any other function.

The domain of the derivative f ′ may be the same as the
domain of f or smaller, but cannot be larger.
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The Derivative as a Function
The reason is that if f is differentiable at a, f must be
continuous at a.
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The Derivative as a Function
The reason is that if f is differentiable at a, f must be
continuous at a.

So, f cannot be differentiable anywhere it is not continuous.

The converse is not true, a function can be continuous at
x = a without being differentiable there.

A good example is y = |x|.
A continuous function fails to be differentiable anywhere it
has a sharp corner, or a vertical tangent.

Stewart Section 2.8 – p. 2/9



Example 1

Find the derivative of f(x) =
√

x − 1. Also find the domains
of f and f ′.
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Example 1

Find the derivative of f(x) =
√

x − 1. Also find the domains
of f and f ′.

We cannot have a negative number under the square root
sign and get a real number, so the domain of f is [1,∞).

To compute the derivative, consider

lim
x→a

√
x − 1 −

√
a − 1

x − a

as usual we make use of the conjugate technique:

lim
x→a

√
x − 1 −

√
a − 1

x − a

(
√

x − 1 +
√

a − 1√
x − 1 +

√
a − 1

)

Stewart Section 2.8 – p. 3/9



Example 1
The expression simplifies to

f ′(a) = lim
x→a

1√
x − 1 +

√
a − 1

=
1

2
√

a − 1
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Example 1
The expression simplifies to
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1√
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The domain of f ′ is (1,∞).
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Example 1
The expression simplifies to

f ′(a) = lim
x→a

1√
x − 1 +

√
a − 1

=
1

2
√

a − 1

The domain of f ′ is (1,∞).

We have to exclude 1, although it is in the domain of f .
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The Second Derivative
If we regard the derivative f ′ as a function in its own right,
there is no reason why we cannot repeat the process of
finding the derivative, except this time starting with f ′:

f ′′(x) = lim
h→0

f ′(x + h) − f ′(x)

h
if the limit exists
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If we regard the derivative f ′ as a function in its own right,
there is no reason why we cannot repeat the process of
finding the derivative, except this time starting with f ′:

f ′′(x) = lim
h→0

f ′(x + h) − f ′(x)

h
if the limit exists

The second derivative may be regarded as the
instantaneous rate of change of the slope of the tangent to
the graph of f .

If the original function f represents position, then f ′

represents (instantaneous) velocity.

In this case f ′′ represents (instantaneous) acceleration.
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The Second Derivative
We have seen that if f(x) =

√
x, then the derivative is

f ′(x) =
1

2
√

x
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The Second Derivative
This simplifies to

f ′′(a) = lim
x→a

=
−1

2
√

x
√

a(
√

x +
√

a)
=

−1

4(
√

a)3
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Example 2
An object is dropped from a helicopter. The distance from
the ground to the object t seconds after it is dropped is
given by

f(t) = 4000 − 16t2

Find the instantaneous acceleration at t = 2.
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Example 2
An object is dropped from a helicopter. The distance from
the ground to the object t seconds after it is dropped is
given by

f(t) = 4000 − 16t2

Find the instantaneous acceleration at t = 2.

We need to find the first derivative, which we can write as

f ′(a) = lim
x→a

f(x) − f(a)

x − a
= lim

x→a

4000 − 16t2 − (4000 − 16a2)

x − a

This simplifies to

f ′(a) = lim
x→a

−16(x2 − a2)

x − a
= lim

x→a
−16(x + a) = −32a
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Example 2
Now we find the instantaneous acceleration, which is the
second derivative

f ′′(a) = lim
x→a

f ′(x) − f ′(a)

x − a
= lim

x→a

−32x − (−32a)

x − a

This simplifies to

f ′′(a) = lim
x→a

−32(x − a)

x − a
= lim

x→a
−32 = −32

So the instantaneous acceleration at time t is given by
A(t) = −32, that is, the constant function whose value is
−32 for every value of t.

Stewart Section 2.8 – p. 9/9


	The Derivative as a Function
	The Derivative as a Function
	The Derivative as a Function

	The Derivative as a Function
	The Derivative as a Function
	The Derivative as a Function
	The Derivative as a Function
	The Derivative as a Function

	Example 1
	Example 1
	Example 1
	Example 1

	Example 1
	Example 1
	Example 1

	The Second Derivative
	The Second Derivative
	The Second Derivative
	The Second Derivative

	The Second Derivative
	The Second Derivative
	The Second Derivative

	The Second Derivative
	Example 2
	Example 2
	Example 2

	Example 2
	Example 2
	Example 2


