
The Derivative
The derivative of a function f at x = a is given by

f ′(a) = lim
h→0

f(a + h) − f(a)

h
if the limit exists
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Both formulas will produce the same result, but one or the
other may be easier for a given function.
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Example 1
Suppose f(x) = 2x + 3. The first formula for the derivative
gives

f ′(a) = lim
h→0

f(a + h) − f(a)

h
= lim

h→0

[2(a + h) + 3] − [2a + 3]

h
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Example 1
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Example 2

Suppose f(x) = x2
− 2. The first formula for the derivative

gives
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− 2]

h
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Question 1
Suppose

f(x) = −5x + 1

Find f ′(3)

1. -5x 4. 5
2. -5 5. 5x
3. -1 6. none of the above
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Question 2
Suppose

f(x) = x2

Find f ′(x)
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2. -2 5. 5x
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The Tangent Line
The tangent line to the graph of f(x) at x = a is the line
passing through the point (a, f(a)) with slope f ′(a).
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The Tangent Line
The tangent line to the graph of f(x) at x = a is the line
passing through the point (a, f(a)) with slope f ′(a).

Recall the point-slope formula for the wquation of a line with
slope m through the point (x0, y0):

(y − y0) = m(x − x0)

so if m = f ′(a), x0 = a, and y0 = f(a), we have

y − f(a) = f ′(a)(x − a)

in the form y = mx + b this becomes

y = f ′(a)x + f(a) − af ′(a)
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Example

Find the equation of the line tangent to y = x2 at x = 1.
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Question 3
Find the equation of the line tangent to

f(x) = x2
− 4

at x = 1

1. y = 2x − 5 4. y = −2x + 5

2. y = 2x + 5 5. y = −2x

3. y = −2x − 5 6. none of the above
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Question 4
Find the equation of the line tangent to

f(x) = 2x2 + 1

at x = −1

1. y = 4x − 1 4. y = −4x + 1

2. y = 4x + 1 5. y = −4x

3. y = −4x − 1 6. none of the above
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Question 5
Find the equation of the line tangent to

f(x) =
1

x

at x = 1

1. y = −x − 2 4. y = −x + 2

2. y = x + 2 5. y = −x

3. y = −x − 2 6. none of the above
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Question 5
Find the equation of the line tangent to

f(x) =
1

x

at x = 1

1. y = −x − 2 4. y = −x + 2

2. y = x + 2 5. y = −x

3. y = −x − 2 6. none of the above

4. y = −− x + 2
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