## Question 1

A car is travelling $50 \mathrm{mi} / \mathrm{hr}$ in a straight line when the brakes are applied. If the brakes produce a constant deceleration of $-22 \mathrm{ft} / \mathrm{sec}^{2}$, what is the distance the car travels before it comes to a stop?

## Question 1

A car is travelling $50 \mathrm{mi} / \mathrm{hr}$ in a straight line when the brakes are applied. If the brakes produce a constant deceleration of $-22 \mathrm{ft} / \mathrm{sec}^{2}$, what is the distance the car travels before it comes to a stop?

Solution: 122.2 ft

## Question 2

A function has roots at $x=2$ and $x=4$. What does Rolle's theorem tell us about this function?

## Question 2

A function has roots at $x=2$ and $x=4$. What does Rolle's theorem tell us about this function?

Solution: There is a point in $(2,4)$ where $f^{\prime}(x)=0$.

## Question 3

Find the critical numbers of the function

$$
g(y)=\frac{y-1}{y^{2}-y+1}
$$

## Question 3

Find the critical numbers of the function

$$
g(y)=\frac{y-1}{y^{2}-y+1}
$$

## Solution: 0 and 2

## Question 4

Find the absolute max and min values of

$$
f(x)=2 x^{3}-3 x^{2}-12 x+1 \quad \text { on } \quad[-2,3]
$$

## Question 4

Find the absolute max and min values of

$$
f(x)=2 x^{3}-3 x^{2}-12 x+1 \quad \text { on } \quad[-2,3]
$$

Solution: min: $f(2)=-19 \max : f(-1)=8$

## Question 5

Find the critical numbers of

$$
f(x)=x^{4}(x-1)^{3}
$$

## Question 5

Find the critical numbers of

$$
f(x)=x^{4}(x-1)^{3}
$$

## Solution: $0,1, \frac{4}{7}$

