Suppose

$$f(x) = c$$

- **1.** f'(a) = 1
- **2.** f'(a) = ca
- **3.** f'(a) = c
- **4.** f'(a) = 0
- 5. the limit does not exist
 - 6. none of the above

Suppose

$$f(x) = c$$

Use the definition of the derivative to find f'(a)

- **1.** f'(a) = 1
- **2.** f'(a) = ca
- **3.** f'(a) = c
- **4.** f'(a) = 0
- 5. the limit does not exist
 - 6. none of the above

4. f'(a) = 0 for any *a*

Suppose

$$f(x) = x$$

- **1.** f'(a) = 1
- **2.** f'(a) = ca
- **3.** f'(a) = c
- **4.** f'(a) = 0
- 5. the limit does not exist
 - 6. none of the above

Suppose

$$f(x) = x$$

Use the definition of the derivative to find f'(a)

- **1.** f'(a) = 1
- **2.** f'(a) = ca
- **3.** f'(a) = c
- **4.** f'(a) = 0
 - the limit does not exist
 - 6. none of the above

1. f'(a) = 1 for any a

The algebra is a bit complicated but with enough time and patience we could show that if $f(x) = x^n$ for some positive integer *n*, then

$$f'(a) = na^{n-1}$$

The algebra is a bit complicated but with enough time and patience we could show that if $f(x) = x^n$ for some positive integer *n*, then

$$f'(a) = na^{n-1}$$

This enables us to very easily find the derivatives of integer powers of x:

If
$$f(x) = x^2$$
, $f'(a) = 2a$

The algebra is a bit complicated but with enough time and patience we could show that if $f(x) = x^n$ for some positive integer *n*, then

$$f'(a) = na^{n-1}$$

This enables us to very easily find the derivatives of integer powers of x:

If $f(x) = x^2$, f'(a) = 2aIf $f(x) = x^5$, $f'(a) = 5a^4$

The algebra is a bit complicated but with enough time and patience we could show that if $f(x) = x^n$ for some positive integer *n*, then

$$f'(a) = na^{n-1}$$

This enables us to very easily find the derivatives of integer powers of x:

If
$$f(x) = x^2$$
, $f'(a) = 2a$
If $f(x) = x^5$, $f'(a) = 5a^4$
If $f(x) = x^{23}$, $f'(a) = 23a^{22}$

The algebra is a bit complicated but with enough time and patience we could show that if $f(x) = x^n$ for some positive integer *n*, then

$$f'(a) = na^{n-1}$$

This enables us to very easily find the derivatives of integer powers of x:

If $f(x) = x^2$, f'(a) = 2aIf $f(x) = x^5$, $f'(a) = 5a^4$ If $f(x) = x^{23}$, $f'(a) = 23a^{22}$

It can be shown that the formula even works when n is not a positive integer; n can be any real number.

Suppose

$$f(x) = x^7$$

- **1.** $f'(a) = 6a^7$ **2.** $f'(a) = 7a^6$
- **3.** $f'(a) = a^7$

- 4. $f'(a) = 6a^7$
- 5. the limit does not exist
- 6. none of the above

Suppose

$$f(x) = x^7$$

Use the definition of the derivative to find f'(a)

1.
$$f'(a) = 6a^7$$

2.
$$f'(a) = 7a^6$$

3.
$$f'(a) = a^7$$

4.
$$f'(a) = 6a^7$$

- 5. the limit does not exist
- 6. none of the above

2. $f'(a) = 7a^6$ for any *a*

Suppose

$$f(x) = x^4$$

1.
$$f'(a) = 4a^3$$

2. $f'(a) = 3a^4$

3.
$$f'(a) = a^3$$

- 4. $f'(a) = 4a^4$
- 5. the limit does not exist
- 6. none of the above

Suppose

$$f(x) = x^4$$

1.
$$f'(a) = 4a^3$$

2. $f'(a) = 3a^4$
3. $f'(a) = a^3$

4.
$$f'(a) = 4a^4$$

- 5. the limit does not exist
- 6. none of the above

1.
$$f'(a) = 4a^3$$
 for any *a*