Question 1

Suppose

$$
f(x)=c
$$

Use the definition of the derivative to find $f^{\prime}(a)$

1. $f^{\prime}(a)=1$
2. $f^{\prime}(a)=0$
3. $f^{\prime}(a)=c a$
4. $f^{\prime}(a)=c$
5. the limit does not exist
6. none of the above

Question 1

Suppose

$$
f(x)=c
$$

Use the definition of the derivative to find $f^{\prime}(a)$

$$
\text { 1. } f^{\prime}(a)=1
$$

4. $f^{\prime}(a)=0$
5. $f^{\prime}(a)=c a$
6. the limit does not exist
7. $f^{\prime}(a)=c$
8. none of the above
9. $f^{\prime}(a)=0$ for any a

Question 2

Suppose

$$
f(x)=x
$$

Use the definition of the derivative to find $f^{\prime}(a)$

1. $f^{\prime}(a)=1$
2. $f^{\prime}(a)=0$
3. $f^{\prime}(a)=c a$
4. $f^{\prime}(a)=c$
5. none of the above

Question 2

Suppose

$$
f(x)=x
$$

Use the definition of the derivative to find $f^{\prime}(a)$

1. $f^{\prime}(a)=1$
2. $\quad f^{\prime}(a)=0$
3. $f^{\prime}(a)=c a$
4. $f^{\prime}(a)=c$
5. the limit does not exist
6. none of the above
7. $f^{\prime}(a)=1$ for any a

The Power Rule

The algebra is a bit complicated but with enough time and patience we could show that if $f(x)=x^{n}$ for some positive integer n, then

$$
f^{\prime}(a)=n a^{n-1}
$$

The Power Rule

The algebra is a bit complicated but with enough time and patience we could show that if $f(x)=x^{n}$ for some positive integer n, then

$$
f^{\prime}(a)=n a^{n-1}
$$

This enables us to very easily find the derivatives of integer powers of x :
If $f(x)=x^{2}, f^{\prime}(a)=2 a$

The Power Rule

The algebra is a bit complicated but with enough time and patience we could show that if $f(x)=x^{n}$ for some positive integer n, then

$$
f^{\prime}(a)=n a^{n-1}
$$

This enables us to very easily find the derivatives of integer powers of x :
If $f(x)=x^{2}, f^{\prime}(a)=2 a$
If $f(x)=x^{5}, f^{\prime}(a)=5 a^{4}$

The Power Rule

The algebra is a bit complicated but with enough time and patience we could show that if $f(x)=x^{n}$ for some positive integer n, then

$$
f^{\prime}(a)=n a^{n-1}
$$

This enables us to very easily find the derivatives of integer powers of x :
If $f(x)=x^{2}, f^{\prime}(a)=2 a$
If $f(x)=x^{5}, f^{\prime}(a)=5 a^{4}$
If $f(x)=x^{23}, f^{\prime}(a)=23 a^{22}$

The Power Rule

The algebra is a bit complicated but with enough time and patience we could show that if $f(x)=x^{n}$ for some positive integer n, then

$$
f^{\prime}(a)=n a^{n-1}
$$

This enables us to very easily find the derivatives of integer powers of x :
If $f(x)=x^{2}, f^{\prime}(a)=2 a$
If $f(x)=x^{5}, f^{\prime}(a)=5 a^{4}$
If $f(x)=x^{23}, f^{\prime}(a)=23 a^{22}$
It can be shown that the formula even works when n is not a positive integer; n can be any real number.

Question 3

Suppose

$$
f(x)=x^{7}
$$

Use the definition of the derivative to find $f^{\prime}(a)$

1. $f^{\prime}(a)=6 a^{7}$
2. $f^{\prime}(a)=7 a^{6}$
3. $f^{\prime}(a)=a^{7}$
4. $f^{\prime}(a)=6 a^{7}$
5. the limit does not exist
6. none of the above

Question 3

Suppose

$$
f(x)=x^{7}
$$

Use the definition of the derivative to find $f^{\prime}(a)$

$$
\begin{array}{ll}
\text { 1. } & f^{\prime}(a)=6 a^{7} \\
\text { 2. } & f^{\prime}(a)=7 a^{6} \\
\text { 3. } & f^{\prime}(a)=a^{7}
\end{array}
$$

$$
\text { 4. } f^{\prime}(a)=6 a^{7}
$$

5. the limit does not exist
6. none of the above
7. $f^{\prime}(a)=7 a^{6}$ for any a

Question 4

Suppose

$$
f(x)=x^{4}
$$

Use the definition of the derivative to find $f^{\prime}(a)$

1. $f^{\prime}(a)=4 a^{3}$
2. $f^{\prime}(a)=4 a^{4}$
3. $f^{\prime}(a)=3 a^{4}$
4. $f^{\prime}(a)=a^{3}$
5. none of the above
6. the limit does not exist

Question 4

Suppose

$$
f(x)=x^{4}
$$

Use the definition of the derivative to find $f^{\prime}(a)$

$$
\begin{array}{ll}
\text { 1. } & f^{\prime}(a)=4 a^{3} \\
\text { 2. } & f^{\prime}(a)=3 a^{4} \\
\text { 3. } & f^{\prime}(a)=a^{3}
\end{array}
$$

$$
\text { 4. } f^{\prime}(a)=4 a^{4}
$$

5. the limit does not exist
6. none of the above
7. $f^{\prime}(a)=4 a^{3}$ for any a
