Question 1

Suppose $y=f(x)$ is an arbitrary function. The difference quotient

$$
\frac{f(a+h)-f(a)}{h}
$$

represents:

1. The slope of the tangent line at $x=a$
2. The instantaneous rate of change of f at $x=a$
3. The slope of the secant from $(a, f(a))$ to $(a+h, f(a+h))$
4. The average rate of change of f from a to $a+h$
5. 6. and 2.
1. 3. and 4.

Question 1

Suppose $y=f(x)$ is an arbitrary function. The difference quotient

$$
\frac{f(a+h)-f(a)}{h}
$$

represents:

1. The slope of the tangent line at $x=a$
2. The instantaneous rate of change of f at $x=a$
3. The slope of the secant from $(a, f(a))$ to $(a+h, f(a+h))$
4. The average rate of change of f from a to $a+h$
5. 6. and 2.
1. 3. and 4.
1. (3 and 4 both)

Question 2

Suppose $y=f(x)$ is an arbitrary function. If it exists, the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

represents:

1. The slope of the tangent line at $x=a$
2. The instantaneous rate of change of f at $x=a$
3. The slope of the secant from $(a, f(a))$ to $(a+h, f(a+h))$
4. The average rate of change of f from a to $a+h$
5. 6. and 2.
1. 3. and 4.

Question 2

Suppose $y=f(x)$ is an arbitrary function. If it exists, the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

represents:

1. The slope of the tangent line at $x=a$
2. The instantaneous rate of change of f at $x=a$
3. The slope of the secant from $(a, f(a))$ to $(a+h, f(a+h))$
4. The average rate of change of f from a to $a+h$
5. 6. and 2.
1. 3. and 4.
1. (1 and 2 both)

Question 3

Suppose f is differentiable at $x=a$. Then $f^{\prime}(a)$ represents:

1. The slope of the tangent line at $x=a$
2. The instantaneous rate of change of f at $x=a$
3. The slope of the secant from $(a, f(a))$ to $(a+h, f(a+h))$
4. The average rate of change of f from a to $a+h$
5. 6. and 2.
1. 3. and 4.

Question 3

Suppose f is differentiable at $x=a$. Then $f^{\prime}(a)$ represents:

1. The slope of the tangent line at $x=a$
2. The instantaneous rate of change of f at $x=a$
3. The slope of the secant from $(a, f(a))$ to $(a+h, f(a+h))$
4. The average rate of change of f from a to $a+h$
5. 6. and 2.
1. 3. and 4.
1. (1 and 2 both)

Question 4

Suppose $y=f(t)$ represents the position of a particle at time t. The difference quotient

$$
\frac{f(t+h)-f(t)}{h}
$$

represents:

1. The instantaneous velocity at time t
2. The average velocity from time t to $t+h$
3. The instantaneous velocity at time $t+h$
4. The instantaneous acceleration at time t
5. The average acceleration from time t to $t+h$
6. The position at time $t+h$

Question 4

Suppose $y=f(t)$ represents the position of a particle at time t. The difference quotient

$$
\frac{f(t+h)-f(t)}{h}
$$

represents:

1. The instantaneous velocity at time t
2. The average velocity from time t to $t+h$
3. The instantaneous velocity at time $t+h$
4. The instantaneous acceleration at time t
5. The average acceleration from time t to $t+h$
6. The position at time $t+h$
7.

Question 5

Suppose $y=f(t)$ represents the position of a particle at time t. If it exists, the limit

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

represents:

1. The instantaneous velocity at time t
2. The average velocity from time t to $t+h$
3. The instantaneous velocity at time $t+h$
4. The instantaneous acceleration at time t
5. The average acceleration from time t to $t+h$
6. The position at time $t+h$

Question 5

Suppose $y=f(t)$ represents the position of a particle at time t. If it exists, the limit

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

represents:

1. The instantaneous velocity at time t
2. The average velocity from time t to $t+h$
3. The instantaneous velocity at time $t+h$
4. The instantaneous acceleration at time t
5. The average acceleration from time t to $t+h$
6. The position at time $t+h$

Question 6

Suppose $y=f(t)$ is differentiable and represents the position of a particle at time t. If it exists, the limit

$$
\lim _{h \rightarrow 0} \frac{f^{\prime}(t+h)-f^{\prime}(t)}{h}
$$

represents:

1. The instantaneous velocity at time t
2. The average velocity from time t to $t+h$
3. The instantaneous velocity at time $t+h$
4. The instantaneous acceleration at time t
5. The average acceleration from time t to $t+h$
6. The position at time $t+h$

Question 6

Suppose $y=f(t)$ is differentiable and represents the position of a particle at time t. If it exists, the limit

$$
\lim _{h \rightarrow 0} \frac{f^{\prime}(t+h)-f^{\prime}(t)}{h}
$$

represents:

1. The instantaneous velocity at time t
2. The average velocity from time t to $t+h$
3. The instantaneous velocity at time $t+h$
4. The instantaneous acceleration at time t
5. The average acceleration from time t to $t+h$
6. The position at time $t+h$

Question 7

Suppose $f(x)$ is a function. Which of the following are true?

1. f can be differentiable but not continuous at $x=a$
2. f can be continuous but not differentiable at $x=a$
3. If f is continuous at $x=a$, it is differentiable there
4. If f is differentiable at $x=a$, it is continuous there
5. (both 1 and 3)
6. (both 2 and 4)

Question 7

Suppose $f(x)$ is a function. Which of the following are true?

1. f can be differentiable but not continuous at $x=a$
2. f can be continuous but not differentiable at $x=a$
3. If f is continuous at $x=a$, it is differentiable there
4. If f is differentiable at $x=a$, it is continuous there
5. (both 1 and 3)
6. (both 2 and 4)
7. (both 2 and 4)

Question 8

Suppose $f(x)$ is a function defined for all real numbers and $a<b$. To apply the Intermediate Value Theorem on the interval from a to b, it must be true that:

1. f is continuous on (a, b)
2. f is continuous on $[a, b]$
3. $f(a)=f(b)$
4. $f(a) \neq f(b)$
5. (both 1 and 3)
6. (both 2 and 4)

Question 8

Suppose $f(x)$ is a function defined for all real numbers and $a<b$. To apply the Intermediate Value Theorem on the interval from a to b, it must be true that:

1. f is continuous on (a, b)
2. f is continuous on $[a, b]$
3. $f(a)=f(b)$
4. $f(a) \neq f(b)$
5. (both 1 and 3)
6. (both 2 and 4)
7. (both 2 and 4)

Question 9

Suppose $f(x), g(x)$, and $h(x)$ are functions and

$$
f(x) \leq g(x) \leq h(x) \quad \text { for all } x
$$

To determine $\lim _{x \rightarrow a} g(x)$ using the squeeze theorem, it must be true that:

1. $\lim _{x \rightarrow a} f(x)$ exists
2. $\lim _{x \rightarrow a} g(x)$ exists
3. $\lim _{x \rightarrow a} h(x)$ exists
4. $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)$
5. All of the above
6. (1,3 , and 4 only)

Question 9

Suppose $f(x), g(x)$, and $h(x)$ are functions and

$$
f(x) \leq g(x) \leq h(x) \quad \text { for all } x
$$

To determine $\lim _{x \rightarrow a} g(x)$ using the squeeze theorem, it must be true that:

1. $\lim _{x \rightarrow a} f(x)$ exists
2. $\lim _{x \rightarrow a} g(x)$ exists
3. $\lim _{x \rightarrow a} h(x)$ exists
4. $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)$
5. All of the above
6. (1,3 , and 4 only)
7. $(1,3$, and 4$)$

Question 10

Suppose $f(x)$ is defined piecewise by

$$
f(x)= \begin{cases}|x-1| & \text { if } \quad x<0 \\ a b^{x} & \text { if } \quad x \geq 0 \quad b>0\end{cases}
$$

What value of a makes f continuous at $x=0$?

1. $a=0$
2. $a=-1$
3. $a=1$
4. $a=2$
5. Cannot be determined
6. None of the above

Question 10

Suppose $f(x)$ is defined piecewise by

$$
f(x)= \begin{cases}|x-1| & \text { if } \quad x<0 \\ a b^{x} & \text { if } \quad x \geq 0 \quad b>0\end{cases}
$$

What value of a makes f continuous at $x=0$?

1. $a=0$
2. $a=-1$
3. $a=1$
4. $a=2$
5. Cannot be determined
6. None of the above
7. $a=1$

Question 11

Find the derivative of

$$
f(x)=\frac{1}{x}
$$

directly from the definition as a limit of a difference quotient.

1. $-1 / x$
2. $-1 / x^{2}$
3. $1 / x$
4. $\ln x$
5. $1 / x^{2}$
6. none of the above

Question 11

Find the derivative of

$$
f(x)=\frac{1}{x}
$$

directly from the definition as a limit of a difference quotient.

1. $-1 / x$
2. $-1 / x^{2}$
3. $1 / x$
4. $1 / x^{2}$
5. $\ln x$
6. none of the above
7.

Question 12

A particle moves along a straight line with its position at time t given by the function

$$
f(t)=10+50 t-12 t^{2}
$$

Find a formula for the average velocity from $t=0$ to $t=a$.

1. $50-12 a^{2}$
2. $50+12 a$
3. $50 a-12$
4. $50+12 a^{2}$
5. $50 a-12 a^{2}$
6. none of the above

Question 12

A particle moves along a straight line with its position at time t given by the function

$$
f(t)=10+50 t-12 t^{2}
$$

Find a formula for the average velocity from $t=0$ to $t=a$.

$$
\begin{array}{ll}
\text { 1. } & 50-12 a^{2}
\end{array} \begin{array}{ll}
\text { 4. } & 50+12 a \\
\text { 2. } & 50 a-12
\end{array} \begin{aligned}
& \text { 5. } \\
& \text { 3. } \\
& \text { 3. } \\
& 50 a-12 a^{2} \\
& \text { 6. }
\end{aligned}
$$

6. The average velocity from $t=0$ to $t=a$ is $50-12 a$

Question 13

A particle moves along a straight line with its position at time t given by the function

$$
f(t)=10+50 t-12 t^{2}
$$

Find a formula for the instantaneous velocity at $t=a$.

$$
\begin{array}{ll}
\text { 1. } 50-12 a & \text { 4. } 50-24 a^{2} \\
\text { 2. } & 50-24 a \\
\text { 3. } & 50-12 a^{2}
\end{array} \begin{aligned}
& \text { 5. } \\
& \text { 6. }
\end{aligned} \text { none of the above } 12 a^{2}
$$

Question 13

A particle moves along a straight line with its position at time t given by the function

$$
f(t)=10+50 t-12 t^{2}
$$

Find a formula for the instantaneous velocity at $t=a$.

$$
\begin{array}{ll}
\text { 1. } 50-12 a & \text { 4. } 50-24 a^{2} \\
\text { 2. } & 50-24 a \\
\text { 3. } & 50-12 a^{2}
\end{array} \begin{aligned}
& \text { 5. } \\
& \text { 6. } \\
& \text { 6. none of the above }
\end{aligned}
$$

2.

Question 14

A particle moves along a straight line with its position at time t given by the function

$$
f(t)=10+50 t-12 t^{2}
$$

Find a formula for the instantaneous acceleration at $t=a$.

1.	$-12 a$	4.	$24 a$
2.	$-24 a$	5.	-24
3.	$-12 a^{2}$	6.	none of the above

Question 14

A particle moves along a straight line with its position at time t given by the function

$$
f(t)=10+50 t-12 t^{2}
$$

Find a formula for the instantaneous acceleration at $t=a$.

1.	$-12 a$	4.	$24 a$
2.	$-24 a$	5.	-24
3.	$-12 a^{2}$	6.	none of the above

5.

Question 15

Suppose

$$
\frac{x-\sqrt{2}}{x^{2}-2} \leq g(x) \leq \frac{x^{2}-4}{x-2}
$$

If possible, use the squeeze theorem to find the limit of $g(x)$ as $x \rightarrow 2$.

1. 2
2. $1 / 4$
3. $-2 \quad 5$.
4. $-1 / 2 \quad 6$.
$1 / 2$
cannot be determined

Question 15

Suppose

$$
\frac{x-\sqrt{2}}{x^{2}-2} \leq g(x) \leq \frac{x^{2}-4}{x-2}
$$

If possible, use the squeeze theorem to find the limit of $g(x)$ as $x \rightarrow 2$.

1. 2
2. $-2 \quad 5$.
3. $1 / 4$
$1 / 2$
4. $-1 / 2 \quad 6$.
cannot be determined
5.

Question 16

Suppose $f(x)=3+x$ and $g(x)=3 x^{2}$, can we use the Intermediate Value Theorem to show that

$$
f(x)-g(x)
$$

has a root in the interval $[0,1]$?

1. Yes
2. No, because $(f-g)(x)$ is not continuous on $[0,1]$
3. No, because $(f-g)(0)=(f-g)(1)$
4. No, because 0 is not between $(f-g)(0)$ and $(f-g)(1)$

Question 16

Suppose $f(x)=3+x$ and $g(x)=3 x^{2}$, can we use the Intermediate Value Theorem to show that

$$
f(x)-g(x)
$$

has a root in the interval $[0,1]$?

1. Yes
2. No, because $(f-g)(x)$ is not continuous on $[0,1]$
3. No, because $(f-g)(0)=(f-g)(1)$
4. No, because 0 is not between $(f-g)(0)$ and $(f-g)(1)$
5.

Question 17

Suppose

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x<2 \\
x^{2} & \text { if } & x \geq 2
\end{array}\right.
$$

Then f is continuous everywhere except:

1. $\{0\}$
2. $\{1,2\}$
3. $\{1\}$
4. $\{0,2\}$
5. $\{0,1\}$
6. f is continuous everywhere

Question 17

Suppose

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x<2 \\
x^{2} & \text { if } & x \geq 2
\end{array}\right.
$$

Then f is continuous everywhere except:

1. $\{0\}$
2. $\{1\}$
3. $\{0,1\}$
4. $\{1,2\}$
5. $\{0,2\}$
6. f is continuous everywhere
7.

Question 18

Suppose

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x<2 \\
x^{2} & \text { if } & x \geq 2
\end{array}\right.
$$

Is f continuous from the left at $x=2$?

1. Yes
2. No because $f(2)$ does not exist
3. No because $\lim _{x \rightarrow 2^{-}} f(x)$ does not exist
4. No because $\lim _{x \rightarrow 2^{-}} f(x) \neq f(2)$

Question 18

Suppose

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x<2 \\
x^{2} & \text { if } & x \geq 2
\end{array}\right.
$$

Is f continuous from the left at $x=2$?

1. Yes
2. No because $f(2)$ does not exist
3. No because $\lim _{x \rightarrow 2^{-}} f(x)$ does not exist
4. No because $\lim _{x \rightarrow 2^{-}} f(x) \neq f(2)$
5.

Question 19

Suppose

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x<2 \\
x^{2} & \text { if } & x \geq 2
\end{array}\right.
$$

Is f continuous from the right at $x=2$?

1. Yes
2. No because $f(2)$ does not exist
3. No because $\lim _{x \rightarrow 2^{+}} f(x)$ does not exist
4. No because $\lim _{x \rightarrow 2^{+}} f(x) \neq f(2)$

Question 19

Suppose

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{2}-1}{x-1} & \text { if } & x<2 \\
x^{2} & \text { if } & x \geq 2
\end{array}\right.
$$

Is f continuous from the right at $x=2$?

1. Yes
2. No because $f(2)$ does not exist
3. No because $\lim _{x \rightarrow 2^{+}} f(x)$ does not exist
4. No because $\lim _{x \rightarrow 2^{+}} f(x) \neq f(2)$
5.

Question 20

Suppose

$$
f(x)=x^{2}-4 x-4
$$

Find the equation of the tangent line at $x=3$

1. $y=2 x+13$
2. $y=-2 x+13$
3. $y=-2 x-13$
4. $y=2 x+7$
5. $y=2 x-13$
6. none of the above

Question 20

Suppose

$$
f(x)=x^{2}-4 x-4
$$

Find the equation of the tangent line at $x=3$

$$
\text { 1. } y=2 x+13
$$

2. $y=-2 x+13$
3. $y=-2 x-13$
4. $y=2 x+7$
5. $y=2 x-13$
6. none of the above
7. $y=2 x-13$
