
Question 1
Suppose y = f(x) is an arbitrary function. The difference
quotient

f(a + h) − f(a)

h

represents:

1. The slope of the tangent line at x = a

2. The instantaneous rate of change of f at x = a

3. The slope of the secant from (a, f(a)) to (a + h, f(a + h))

4. The average rate of change of f from a to a + h

5. 1. and 2.
6. 3. and 4.
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Suppose y = f(x) is an arbitrary function. The difference
quotient

f(a + h) − f(a)

h

represents:

1. The slope of the tangent line at x = a

2. The instantaneous rate of change of f at x = a

3. The slope of the secant from (a, f(a)) to (a + h, f(a + h))

4. The average rate of change of f from a to a + h

5. 1. and 2.
6. 3. and 4.

6. (3 and 4 both)
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Question 2
Suppose y = f(x) is an arbitrary function. If it exists, the
limit

lim
h→0

f(a + h) − f(a)

h

represents:

1. The slope of the tangent line at x = a

2. The instantaneous rate of change of f at x = a

3. The slope of the secant from (a, f(a)) to (a + h, f(a + h))

4. The average rate of change of f from a to a + h

5. 1. and 2.
6. 3. and 4.
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Question 2
Suppose y = f(x) is an arbitrary function. If it exists, the
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lim
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2. The instantaneous rate of change of f at x = a
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Question 3
Suppose f is differentiable at x = a. Then f ′(a) represents:

1. The slope of the tangent line at x = a

2. The instantaneous rate of change of f at x = a

3. The slope of the secant from (a, f(a)) to (a + h, f(a + h))

4. The average rate of change of f from a to a + h

5. 1. and 2.
6. 3. and 4.
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Question 3
Suppose f is differentiable at x = a. Then f ′(a) represents:

1. The slope of the tangent line at x = a

2. The instantaneous rate of change of f at x = a

3. The slope of the secant from (a, f(a)) to (a + h, f(a + h))

4. The average rate of change of f from a to a + h

5. 1. and 2.
6. 3. and 4.

5. (1 and 2 both)
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Question 4
Suppose y = f(t) represents the position of a particle at
time t. The difference quotient

f(t + h) − f(t)

h

represents:

1. The instantaneous velocity at time t

2. The average velocity from time t to t + h

3. The instantaneous velocity at time t + h

4. The instantaneous acceleration at time t

5. The average acceleration from time t to t + h

6. The position at time t + h
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Question 4
Suppose y = f(t) represents the position of a particle at
time t. The difference quotient

f(t + h) − f(t)

h

represents:

1. The instantaneous velocity at time t

2. The average velocity from time t to t + h

3. The instantaneous velocity at time t + h

4. The instantaneous acceleration at time t

5. The average acceleration from time t to t + h

6. The position at time t + h

2.
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Question 5
Suppose y = f(t) represents the position of a particle at
time t. If it exists, the limit

lim
h→0

f(t + h) − f(t)

h

represents:

1. The instantaneous velocity at time t

2. The average velocity from time t to t + h

3. The instantaneous velocity at time t + h

4. The instantaneous acceleration at time t

5. The average acceleration from time t to t + h

6. The position at time t + h
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Question 5
Suppose y = f(t) represents the position of a particle at
time t. If it exists, the limit

lim
h→0

f(t + h) − f(t)

h

represents:

1. The instantaneous velocity at time t

2. The average velocity from time t to t + h

3. The instantaneous velocity at time t + h

4. The instantaneous acceleration at time t

5. The average acceleration from time t to t + h

6. The position at time t + h

1.
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Question 6
Suppose y = f(t) is differentiable and represents the
position of a particle at time t. If it exists, the limit

lim
h→0

f ′(t + h) − f ′(t)

h

represents:

1. The instantaneous velocity at time t

2. The average velocity from time t to t + h

3. The instantaneous velocity at time t + h

4. The instantaneous acceleration at time t

5. The average acceleration from time t to t + h

6. The position at time t + h
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Question 6
Suppose y = f(t) is differentiable and represents the
position of a particle at time t. If it exists, the limit

lim
h→0

f ′(t + h) − f ′(t)

h

represents:

1. The instantaneous velocity at time t

2. The average velocity from time t to t + h

3. The instantaneous velocity at time t + h

4. The instantaneous acceleration at time t

5. The average acceleration from time t to t + h

6. The position at time t + h

4.
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Question 7
Suppose f(x) is a function. Which of the following are true?

1. f can be differentiable but not continuous at x = a

2. f can be continuous but not differentiable at x = a

3. If f is continuous at x = a, it is differentiable there
4. If f is differentiable at x = a, it is continuous there
5. (both 1 and 3)
6. (both 2 and 4)
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Question 8
Suppose f(x) is a function defined for all real numbers and
a < b. To apply the Intermediate Value Theorem on the
interval from a to b, it must be true that:

1. f is continuous on (a, b)

2. f is continuous on [a, b]

3. f(a) = f(b)

4. f(a) 6= f(b)

5. (both 1 and 3)
6. (both 2 and 4)
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Question 8
Suppose f(x) is a function defined for all real numbers and
a < b. To apply the Intermediate Value Theorem on the
interval from a to b, it must be true that:

1. f is continuous on (a, b)

2. f is continuous on [a, b]

3. f(a) = f(b)

4. f(a) 6= f(b)

5. (both 1 and 3)
6. (both 2 and 4)

6. (both 2 and 4)
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Question 9
Suppose f(x), g(x), and h(x) are functions and

f(x) ≤ g(x) ≤ h(x) for all x

To determine limx→a g(x) using the squeeze theorem, it
must be true that:
1. limx→a f(x) exists
2. limx→a g(x) exists
3. limx→a h(x) exists
4. limx→a f(x) = limx→a h(x)

5. All of the above
6. (1,3, and 4 only)
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Question 9
Suppose f(x), g(x), and h(x) are functions and

f(x) ≤ g(x) ≤ h(x) for all x

To determine limx→a g(x) using the squeeze theorem, it
must be true that:
1. limx→a f(x) exists
2. limx→a g(x) exists
3. limx→a h(x) exists
4. limx→a f(x) = limx→a h(x)

5. All of the above
6. (1,3, and 4 only)

6. (1, 3, and 4)
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Question 10
Suppose f(x) is defined piecewise by

f(x) =

{

|x − 1| if x < 0

abx if x ≥ 0 b > 0

What value of a makes f continuous at x = 0?

1. a = 0

2. a = −1

3. a = 1

4. a = 2

5. Cannot be determined
6. None of the above
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Question 10
Suppose f(x) is defined piecewise by

f(x) =

{

|x − 1| if x < 0

abx if x ≥ 0 b > 0

What value of a makes f continuous at x = 0?

1. a = 0

2. a = −1

3. a = 1

4. a = 2

5. Cannot be determined
6. None of the above

3. a = 1
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Question 11
Find the derivative of

f(x) =
1

x

directly from the definition as a limit of a difference
quotient .

1. −1/x 4. −1/x2

2. 1/x 5. 1/x2

3. ln x 6. none of the above
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Question 11
Find the derivative of

f(x) =
1

x

directly from the definition as a limit of a difference
quotient .

1. −1/x 4. −1/x2

2. 1/x 5. 1/x2

3. ln x 6. none of the above

4.

Exam1 Review – p. 11/20



Question 12
A particle moves along a straight line with its position at
time t given by the function

f(t) = 10 + 50t − 12t2

Find a formula for the average velocity from t = 0 to t = a.

1. 50 − 12a2 4. 50 + 12a

2. 50a − 12 5. 50 + 12a2

3. 50a − 12a2 6. none of the above
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Question 12
A particle moves along a straight line with its position at
time t given by the function

f(t) = 10 + 50t − 12t2

Find a formula for the average velocity from t = 0 to t = a.

1. 50 − 12a2 4. 50 + 12a

2. 50a − 12 5. 50 + 12a2

3. 50a − 12a2 6. none of the above

6. The average velocity from t = 0 to t = a is 50 − 12a
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Question 13
A particle moves along a straight line with its position at
time t given by the function

f(t) = 10 + 50t − 12t2

Find a formula for the instantaneous velocity at t = a.

1. 50 − 12a 4. 50 − 24a2

2. 50 − 24a 5. 50 + 12a2

3. 50 − 12a2 6. none of the above
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Question 13
A particle moves along a straight line with its position at
time t given by the function

f(t) = 10 + 50t − 12t2

Find a formula for the instantaneous velocity at t = a.

1. 50 − 12a 4. 50 − 24a2

2. 50 − 24a 5. 50 + 12a2

3. 50 − 12a2 6. none of the above

2.
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Question 14
A particle moves along a straight line with its position at
time t given by the function

f(t) = 10 + 50t − 12t2

Find a formula for the instantaneous acceleration at t = a.

1. −12a 4. 24a

2. −24a 5. −24

3. −12a2 6. none of the above
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Question 14
A particle moves along a straight line with its position at
time t given by the function

f(t) = 10 + 50t − 12t2

Find a formula for the instantaneous acceleration at t = a.

1. −12a 4. 24a

2. −24a 5. −24

3. −12a2 6. none of the above

5.
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Question 15
Suppose

x −
√

2

x2 − 2
≤ g(x) ≤ x2 − 4

x − 2

If possible, use the squeeze theorem to find the limit of g(x)
as x → 2.

1. 2 4. 1/4

2. −2 5. 1/2

3. −1/2 6. cannot be determined
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≤ g(x) ≤ x2 − 4

x − 2
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Question 16

Suppose f(x) = 3 + x and g(x) = 3x2, can we use the
Intermediate Value Theorem to show that

f(x) − g(x)

has a root in the interval [0, 1]?

1. Yes
2. No, because (f − g)(x) is not continuous on [0, 1]

3. No, because (f − g)(0) = (f − g)(1)

4. No, because 0 is not between (f − g)(0) and (f − g)(1)
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Question 16

Suppose f(x) = 3 + x and g(x) = 3x2, can we use the
Intermediate Value Theorem to show that

f(x) − g(x)

has a root in the interval [0, 1]?

1. Yes
2. No, because (f − g)(x) is not continuous on [0, 1]

3. No, because (f − g)(0) = (f − g)(1)

4. No, because 0 is not between (f − g)(0) and (f − g)(1)

4.
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Question 17
Suppose

f(x) =

{

x
2
−1

x−1
if x < 2

x2 if x ≥ 2

Then f is continuous everywhere except:

1. {0} 4. {1, 2}
2. {1} 5. {0, 2}
3. {0, 1} 6. f is continuous everywhere
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Question 17
Suppose

f(x) =

{

x
2
−1

x−1
if x < 2

x2 if x ≥ 2

Then f is continuous everywhere except:
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Question 18
Suppose

f(x) =

{

x
2
−1

x−1
if x < 2

x2 if x ≥ 2

Is f continuous from the left at x = 2?

1. Yes
2. No because f(2) does not exist
3. No because limx→2− f(x) does not exist
4. No because limx→2− f(x) 6= f(2)
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Question 18
Suppose

f(x) =

{

x
2
−1

x−1
if x < 2

x2 if x ≥ 2

Is f continuous from the left at x = 2?

1. Yes
2. No because f(2) does not exist
3. No because limx→2− f(x) does not exist
4. No because limx→2− f(x) 6= f(2)
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Question 19
Suppose

f(x) =

{

x
2
−1

x−1
if x < 2

x2 if x ≥ 2

Is f continuous from the right at x = 2?

1. Yes
2. No because f(2) does not exist
3. No because limx→2+ f(x) does not exist
4. No because limx→2+ f(x) 6= f(2)
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Question 19
Suppose

f(x) =

{

x
2
−1

x−1
if x < 2

x2 if x ≥ 2

Is f continuous from the right at x = 2?

1. Yes
2. No because f(2) does not exist
3. No because limx→2+ f(x) does not exist
4. No because limx→2+ f(x) 6= f(2)

1.
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Question 20
Suppose

f(x) = x2 − 4x − 4

Find the equation of the tangent line at x = 3

1. y = 2x + 13 4. y = 2x + 7

2. y = −2x + 13 5. y = 2x − 13

3. y = −2x − 13 6. none of the above
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Question 20
Suppose

f(x) = x2 − 4x − 4

Find the equation of the tangent line at x = 3

1. y = 2x + 13 4. y = 2x + 7

2. y = −2x + 13 5. y = 2x − 13

3. y = −2x − 13 6. none of the above

5. y = 2x − 13
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