MA125 Exam 3 Version 1

Name:

1) Find two positive numbers x and y such that $x+4 y=1000$ and the product $x y$ is as large as possible.

Solution: We need to write the product $x y$ as a function of one variable, so solve for x :

$$
x=1000-4 y
$$

Then

$$
Q=P(y)=x y=(1000-4 y) \cdot y=1000 y-4 y^{2}
$$

Now we differentiate with respect to y to get

$$
P^{\prime}(y)=1000-8 y
$$

Setting this to zero and solving, we get

$$
1000=8 y \quad \text { and so } \quad y=125 \quad \text { and } \quad x=1000-4 y=500
$$

2) If we are using Newton's method to find a critical number of

$$
f(x)=e^{x}-\sin x
$$

with $x_{0}=1$, what is the value of x_{2} ?
Newton's method is used to find solutions to an equation of the form $f(x)=0$. In this case, we are asked to find a critical number of $f(x)=e^{x}-\sin x$, which means a value of x that satisfies:

$$
f^{\prime}(x)=e^{x}-\cos x=0
$$

So for this problem, $f^{\prime}(x)$ will play the role of f, and our recursion formula is:

$$
x_{n+1}=x_{n}-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
$$

or

$$
x_{n+1}=x_{n}-\frac{e^{x}-\cos x}{e^{x}+\sin x}
$$

We are to use $x_{0}=1$, so our first iteration (with $n=0$) will compute x_{1} :

$$
x_{1}=x_{0}-\frac{f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}=1-\frac{e-\cos 1}{e+\sin 1}=1-\frac{2.178}{3.560}=0.3882
$$

Now the second iteration computes x_{2} :
$x_{2}=x_{1}-\frac{f^{\prime}\left(x_{1}\right)}{f^{\prime \prime}\left(x_{1}\right)}=0.3882-\frac{e^{0.3882}-\cos 0.3882}{e^{0.3882}+\sin 0.3882}=0.388-\frac{0.549}{1.853}=0.09203$
3) Find the absolute maximum and minimum of the function

$$
f(x)=-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+3 x+2 \quad \text { on } \quad[-2,1]
$$

To find the absolute maximum and minimum of f we use the closed interval method: Find all critical numbers of f in $[-2,1]$, then evaluate f at each of these values, plus the two endpoints -2 and 1 . The smallest of these values is the absolute minimum, the largest is the absolute maximum.

First we find the critical numbers by solving $f^{\prime}(x)=0$:

$$
f^{\prime}(x)=0=-x^{2}+x+3
$$

The quadratic does not factor, so we have to use the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1-4(-1)(3)}}{-2}=\frac{-1 \pm \sqrt{13}}{-2}
$$

The critical numbers are -1.3028 and 2.3028 , but only the first one is inside the interval $[-2,1]$, so we ignore the second and compute

$$
f(-1.3028)=-1.797
$$

Now we compute

$$
f(-2)=0.6667 \quad \text { and } \quad f(1)=5.1667
$$

So the three candidates for absolute maximum and minimum are:

x	$f(x)$
-1.3028	-1.797
-2	0.6667
1	5.1667

The absolute minimum of 0.08635 occurs at $x=-0.8028$, and the absolute maximum of 5.1667 occurs at the right endpoint, $x=1$.
4) Find the point on the curve

$$
f(x)=1+\sqrt{x}
$$

that is closest to $(1,1)$.
The distance from $(1,1)$ to (x, y) is

$$
D^{2}=(x-1)^{2}+(y-1)^{2}
$$

Since $y=1+\sqrt{x}$, we can substitute to obtain

$$
D^{2}=(x-1)^{2}+(1+\sqrt{x}-1)^{2}=x^{2}-2 x+1+(\sqrt{x})^{2}=x^{2}-x+1
$$

Now we have the distance D as a function of a single variable x, so we can differentiate to obtain

$$
2 D D^{\prime}=2 x-1 \quad \text { and } \quad D^{\prime}=\frac{2 x-1}{2 D}
$$

Setting $D^{\prime}=0$ and solving for x gives:

$$
2 x-1=0 \quad \text { so } \quad 2 x=1
$$

and $x=1 / 2$. Then

$$
(x, y)=\left(\frac{1}{2}, 1+\sqrt{\frac{1}{2}}\right)=(0.5,1.707)
$$

5) Find

$$
\lim _{x \rightarrow 0} \frac{e^{4 x}-1-4 x}{x^{2}}
$$

6) An object initially at rest is released from a height of 3000 ft and falls with acceleration function

$$
a(t)=-32
$$

Find the position of the object after 10 seconds.
Solution: The position function $s(t)$ is an antiderivative of the velocity function $v(t)$, which in turn is an antiderivative of the acceleration function $a(t)$. Since $a(t)$ is constant, the general antiderivative is:

$$
v(t)=-32 t+C
$$

Where C is to be chosen to make the initial velocity $v(0)$ equal to zero, because we are given that the object is initially at rest. So

$$
v(t)=-32 t+0=-32 t
$$

Now we find the position function as the general antiderivative of $v(t)$,

$$
s(t)=-32\left(\frac{t^{2}}{2}\right)+C=-16 t^{2}+C
$$

Now we choose C to make $s(0)$ match the position at time $t=0$, which is 3000 feet:

$$
s(0)=-16 \cdot 0^{2}+C=3000
$$

so $C=3000$, and the position at time t is:

$$
s(t)=-16 t^{2}+3000
$$

and the position after 10 seconds is:

$$
s(10)=-16\left(10^{2}\right)+3000=-1600+3000=1400 \text { feet }
$$

7a) If $f(x)=x^{2}-4 x+1$, which (if any) of the following conclusions can we draw from the Mean Value Theorem?
a) $f^{\prime}(c)=6$ for some $c \in(4,6)$
b) $f^{\prime}(c)=4$ for some $c \in(4,6)$
c) $f^{\prime}(c)=2$ for some $c \in(4,6)$
d) $f^{\prime}(c)=0$ for some $c \in(4,6)$
e) None of the above, the theorem does not apply

Solution: The Mean Value Theorem states that if f is continuous on some closed interval $[a, b]$, then there is a $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

If we consider the interval $[4,6], f$ is continuous on this interval (because polynomials are continuous everywhere) and so we may conclude that there exists a $c \in(4,6)$ such that

$$
f^{\prime}(c)=\frac{f(6)-f(4)}{6-4}=\frac{13-1}{6-4}=6
$$

so the only possible answer is (a).

7b) If $f(x)=x^{2}-5 x+6$, which (if any) of the following conclusions can we draw from Rolle's Theorem?
a) $f^{\prime}(c)=0$ for some $c \in(0,2)$
b) $f^{\prime}(c)=0$ for some $c \in(1,4)$
c) $f^{\prime}(c)=0$ for some $c \in(2,3)$
d) $f^{\prime}(c)=0$ for some $c \in(-2,0)$
e) None of the above

Solution: Rolle's Theorem states that if f is continuous on some closed interval $[a, b]$ and $f(a)-f(b)$, then there is a $c \in(a, b)$ such that

$$
f^{\prime}(c)=0
$$

In order for the theorem to apply, the function values have to be the same at both endpoints. For the first choice, $f(0)=6$ and $f(2)=0$, so the theorem does not apply. For the second choice, $f(1)=2$ and $f(4)=2$, so the theorem applies. It also applies for choice (c) because $f(2)=0$ and $f(3)=0$. so possible answers are (b) and (c) (either one is acceptable; actually both are true).

7c) If $f^{\prime}(x)=0$ for $x \in(0,3)$, which of the following conclusions can be drawn?
a) $f^{\prime \prime}(2)>0$
b) $f(1)=0$
c) $f(3)-f(0)>0$
d) $f(1)=f(2)$
e) None of the above

Solution: We have a theorem that states that if $f^{\prime}(x)=0$ everywhere in an interval I, then f is constant on I. So we conclude that $f(1)=$ $f(2)$. Answer: (e).

7d) If $f^{\prime}(x)=g^{\prime}(x)$ for $x \in(-3,3)$, which of the following conclusions can be drawn?
a) $f^{\prime}(-3)<0$
b) $f(-3)=g(-3)$
c) $f(2)-g(2)=f(0)-g(0)$
d) $f(0)=g(0)$
e) None of the above

Solution: We have a theorem that states that if $f^{\prime}(x)=g^{\prime}(x)$ everywhere in an interval I, then f and g differ by a constant on I. So we conclude that $f(2)-g(2)=f(0)-g(0)$. Answer: (c).

7e) If f has a local minimum at $x=3$, what does Fermat's theorem say about $f^{\prime}(3)$?
a) $f^{\prime}(3)=0$
b) if $f^{\prime}(3)$ exists then $f^{\prime}(3)=0$
c) $f^{\prime}(3)>0$
d) $f^{\prime}(3)<0$
e) Either $f^{\prime}(3)=0$ or $f^{\prime}(3)$ does not exist

Solution: Fermat's theorem states that if f has a local minimum or maximum at 3 , then if $f^{\prime}(3)$ exists it must be zero. Answer: Depending on how you interpreted the question, $(a),(b)$, or (e) would be acceptable. Credit was given for any of these three.

Suppose

$$
f(x)=-\frac{x^{3}}{3}-x^{2}+3 x+7
$$

8a) Which of the following lists contains all of the intervals on which f is increasing?
a) $(-\infty,-1)$
b) $(-\infty,-3),(1, \infty)$
c) $(-3,1)$
d) $(-1, \infty)$
e) $(-\infty, \infty)$

Solution: f is increasing on any interval where $f^{\prime}(x)>0$. Since $f^{\prime}(x)=-x^{2}-2 x+3=(1-x)(3+x)$ is zero at -3 and 1 , and its
graph is a parabola opening down, f^{\prime} is positive on $(-3,1)$. Answer: (c)

8b) Which of the following lists contains all of the intervals on which f is decreasing?
a) $(-\infty,-1)$
b) $(-\infty,-3),(1, \infty)$
c) $(-3,1)$
d) $(-1, \infty)$
e) $(-\infty, \infty)$

Solution: Since $f^{\prime}(x)=-x^{2}-2 x+3=(1-x)(3+x)$ is zero at -3 and 1 , and its graph is a parabola opening down, f^{\prime} is negative on $(-\infty,-3)$ and $(1, \infty)$. Answer: (b)

8c) Which of the following lists contains all of the intervals on which f is concave up?
a) $(-\infty,-1)$
b) $(-\infty,-3),(1, \infty)$
c) $(-3,1)$
d) $(-1, \infty)$
e) $(-\infty, \infty)$

Solution: f is concave up on any interval where $f^{\prime \prime}(x)>0$. Since $f^{\prime \prime}(x)=-2 x-2$ is zero at $x=-1$, and its graph is a straight line with slope $-2, f^{\prime \prime}$ is positive to the left of -1 , on $(-\infty,-1)$. Answer: (a)

8d) Which of the following lists contains all of the intervals on which f is concave down?
a) $(-\infty,-1)$
b) $(-\infty,-3),(1, \infty)$
c) $(-3,1)$
d) $(-1, \infty)$
e) $(-\infty, \infty)$

Solution: f is concave down on any interval where $f^{\prime \prime}(x)<0$. Since $f^{\prime \prime}(x)=-2 x-2$ is zero at $x=-1$, and its graph is a straight line with slope $-2, f^{\prime \prime}$ is negative to the right of -1 , on $(-1, \infty)$. Answer: (d)

8e) Which of the following lists contains all of the intervals on which f^{\prime} is increasing?
a) $(-\infty,-1)$
b) $(-\infty,-3),(1, \infty)$
c) $(-3,1)$
d) $(-1, \infty)$
e) $(-\infty, \infty)$

Solution: f^{\prime} is increasing on any interval where $f^{\prime \prime}(x)>0$. Since $f^{\prime}(x)=-2 x-2$ is zero at -1 and positive to the left of $-1, f^{\prime}$ is increasing on $(-\infty,-1)$. Answer: (a)
9) Find the most general antiderivative of:

$$
g(x)=\frac{5-4 x^{3}+2 x^{6}}{x^{6}}
$$

Solution: We do not yet have techniques for finding antiderivatives of rational functions, but we can convert to a sum of powers of x :

$$
g(x)=\frac{5-4 x^{3}+2 x^{6}}{x^{6}}=\frac{5}{x^{6}}-\frac{4 x^{3}}{x^{6}}+2
$$

or

$$
g(x)=5 x^{-6}-4 x^{-3}+2
$$

Now applying the rule for antiderivatives of powers of x, we have

$$
G(x)=\frac{5 x^{-5}}{-5}-\frac{4 x^{-2}}{-2}+2 x+C=-x^{-5}+2 x^{-2}+2 x+C
$$

10) Find the limit:

$$
\lim _{x \rightarrow-\infty} x^{2} e^{x}
$$

Solution: Note that

$$
x^{2} \rightarrow \infty \quad \text { and } \quad e^{x} \rightarrow 0 \quad \text { as } \quad x \rightarrow-\infty
$$

so the product has the form $0 \cdot \infty$. We have to convert it to $0 / 0$ or ∞ / ∞, which we can do by rewriting the expression as:

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-x}}
$$

Now the numerator and denominator both go to ∞ as $x \rightarrow-\infty$ so it has the form ∞ / ∞ and we can apply L'Hospital's rule:

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}}{e^{-x}}=\lim _{x \rightarrow-\infty} \frac{2 x}{-e^{-x}}
$$

The limit is now $-\infty /-\infty$, so we can apply L'Hospital's rule a second time:

$$
\lim _{x \rightarrow-\infty} \frac{2 x}{-e^{-x}}=\lim _{x \rightarrow-\infty} \frac{2}{e^{-x}}=0
$$

because the numerator is constant, while the denominator tends to infinity.

