MA125 Exam 2 Version 1

Name:

1) The rate of change of the difference between the temperature of an object and the ambient temperature is proportional to that difference. A gallon of tap water is drawn from a faucet at $48^{\circ} \mathrm{F}$ and let stand in a room with an ambient temperature of $75^{\circ} \mathrm{F}$. After 15 minutes, the temperature of the water has risen to $55^{\circ} \mathrm{F}$. What will the temperature of the water be after 1 hour?

Solution: By Newton's las of cooling, the rate of change difference between the temperature of the water and the ambient temperature, $D=T-T_{\text {ambient }}$ is proportional to that difference.

Initially, the difference is:

$$
D(0)=T(0)-T_{\text {ambient }}=48-75=-27
$$

After 15 minutes, the difference is

$$
D(15)=T(15)-T_{\text {ambient }}=55-75=-20
$$

The equation relating $D(0)$ and $D(15)$ is:

$$
D(15)=D(0) e^{15 k} \quad \text { or } \quad-20=-27 \cdot e^{15 k}
$$

so

$$
\ln \left(\frac{-20}{-27}\right)=15 k \quad \text { or } \quad k=\frac{\ln (-20 /-27)}{15}=-0.02
$$

and the temperature difference at time t is:

$$
D(t)=-27 e^{-0.02 t} \quad \text { so } \quad D(60)=-27 e^{-0.02 \cdot 60}=-8.13
$$

so

$$
T(60)=T_{\text {ambient }}+D(60)=75-8.13=66.87
$$

2) Find the equation of the line tangent to the graph of

$$
x^{2}+2 x y-y^{2}+x=2 \quad \text { at } \quad(1,2)
$$

Solution: Differentating implicitly, we have

$$
2 x+\left(2 y+2 x y^{\prime}\right)-2 y y^{\prime}+1=0
$$

We can solve this for y and substitute in $x=1$ and $y=2$, but alternatively we could substitute for x and y first:
$2 \cdot 1+\left(2 \cdot 2+2 \cdot 1 \cdot y^{\prime}\right)-2 \cdot 2 y^{\prime}+1=0 \quad$ or $\quad 2+4+2 y^{\prime}-4 y^{\prime}+1=0$
so

$$
7-2 y^{\prime}=0 \quad \text { and } \quad y^{\prime}=\frac{7}{2}
$$

The equation of the tangent line is

$$
y-f(1)=f^{\prime}(1) \cdot(x-1) \quad \text { or } \quad y-2=\frac{7}{2}(x-1)
$$

which can be simplified to

$$
y=\frac{7}{2} x-\frac{3}{2}
$$

3) Drugs are eliminated from the bloodstream in such a way that the rate of change of the concentration of a drug is proportional to its concentration. A patient recovering from surgery is given a dose of the painkiller dihydromorphinone at midnight that produces an initial concentration of $0.5 \mathrm{mg} / \mathrm{l}$. Two hours later, the concentration is $0.3 \mathrm{mg} / \mathrm{l}$. If the next dose must be given when the concentration reaches $0.1 \mathrm{mg} / \mathrm{l}$, what time should the next dose be given?

Solution: The fact that the rate of change of the concentration of the drug is proportional to the concentration tells us that the exponential growth/decay model applies:

$$
C(t)=C(0) e^{k t}
$$

The given information states that $C(0)=0.5$ and $C(2)=0.3$, so we can determine k by

$$
0.3=0.5 e^{2 k} \quad \text { so } \quad \ln \left(\frac{0.3}{0.5}\right)=2 k
$$

and

$$
k=\frac{\ln (0.3 / 0.5)}{2}=-0.2554
$$

so

$$
\begin{gathered}
C(t)=0.5 e^{-0.2554 t} \text { and } 0.1=0.5 e^{-0.2554 t} \\
t=\frac{\ln (0.1 / 0.5)}{-0.2554}=6.302
\end{gathered}
$$

so the next dose should be given at about $6: 18 A M$.
4) A particle moves along the curve $y=\sqrt{x^{2}-2}$. The x-coordinate of the particle is increasing at a rate of $5 \mathrm{~cm} / \mathrm{sec}$ as it reaches the point $(3, \sqrt{7})$. How fast is the distance from the particle to the origin changing at that instant?

Solution: The square of the distance from the origin to a point on the curve is:

$$
D^{2}=(x-0)^{2}+\left(\sqrt{x^{2}-2}-0\right)^{2}=2 x^{2}-2
$$

Differentiating implicitly,

$$
2 D \frac{d D}{d t}=4 x \frac{d x}{d t}
$$

substituting $d x / d t=5$,

$$
\frac{d D}{d t}=\frac{5 \cdot 4 x}{2 D}
$$

When $x=3$ and $y=\sqrt{7}$,

$$
D=\sqrt{x^{2}+y^{2}}=\sqrt{3^{2}+\sqrt{7}^{2}}=\sqrt{16}=4
$$

so

$$
\frac{d D}{d t}=\frac{5 \cdot 4 \cdot 3}{2 \cdot 4}=\frac{15}{2}
$$

5) A hailstone grows in size as it falls through humid air. Assuming it has the shape of a sphere whose volume is increasing at the rate of $0.4 \mathrm{~cm}^{3} / \mathrm{min}$, how fast is its radius changing when the volume is $1.3 \mathrm{~cm}^{3}$?

Solution: We need to express the radius of a sphere as a function of its volume. The usual formula relating the two is

$$
V=\frac{4}{3} \pi r^{3}
$$

solving for r gives

$$
r=\sqrt[3]{\frac{3 V}{4 \pi}}=\left(\frac{3 V}{4 \pi}\right)^{\frac{1}{3}}
$$

differentiating with respect to time,

$$
\frac{d r}{d t}=\frac{1}{3}\left(\frac{3 V}{4 \pi}\right)^{-\frac{2}{3}}\left(\frac{3}{4 \pi}\right) \frac{d V}{d t}
$$

substituting $V=1.3$ and $d V / d t=0.4$ gives

$$
\frac{d r}{d t}=\frac{1}{3}\left(\frac{3 \cdot 1.3}{4 \pi}\right)^{-\frac{2}{3}}\left(\frac{3}{4 \pi}\right) \cdot 0.4==0.2257
$$

6) The pressure P, temperature T, volume V of an ideal gas are related by the gas law:

$$
P V=n R T
$$

where n is the number of moles of gas present and $R=0.0821$ is the gas constant. If 3 moles of an ideal gas are heated at a rate of 2 kelvins/minute in a sealed 5 liter container, what is the rate of change of the pressure P ?

Since the container is sealed, the volume V is constant at $5 l$, we have

$$
P=\left(\frac{n R}{V}\right) T
$$

Differentiating with respect to time,

$$
\frac{d P}{d t}=\left(\frac{n R}{V}\right) \frac{d T}{d t}=\left(\frac{3 \cdot 0.0821}{5}\right) \cdot 2=0.098
$$

7) An object undergoing damped oscillation has position function

$$
s(t)=A e^{-c t} \cos (\omega t+\delta)
$$

where A, c, ω, and δ are fixed. Find the velocity $v(t)$ and acceleration $a(t)$ of the object.

Solution: The velocity is the derivative of the position function $s(t)$ with respect to t. Applying the product rule gives:

$$
v(t)=s^{\prime}(t)=-A c e^{-c t} \cos (\omega t+\delta)-A e^{-c t} \omega \sin (\omega t+\delta)
$$

The acceleration is $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$, which is obtained by differentiating $v(t)$ with the product rule:

$$
a(t)=A c^{2} e^{-c t} \cos (\omega t+\delta)+2 A c e^{-c t} \omega \sin (\omega t+\delta)-A e^{-c t} \omega^{2} \cos (\omega t+\delta)
$$

8) Find the derivative of

$$
f(t)=\cos ^{2}\left(e^{\sinh t}\right)
$$

This is a multi-level chain rule problem:

$$
\begin{aligned}
& f(u)=u^{2} \\
& g(v)=\cos v \\
& h(w)=e^{w} \\
& j(t)=\sinh t
\end{aligned}
$$

So the derivative of $f(g(h(j(t))))=\cos ^{2}\left(e^{\sinh t}\right)$ has the form

$$
f^{\prime}(g(h(j(t)))) \cdot g^{\prime}\left(h(j(t)) \cdot h^{\prime}(j(t)) \cdot j^{\prime}(t)\right.
$$

or

$$
\left(2 \cos e^{\sinh t}\right) \cdot\left(-\sin e^{\sinh t}\right) \cdot\left(e^{\sinh t}\right) \cdot(\cosh t)
$$

9) The cost of producing x yards of a certain fabric is:

$$
C(x)=1200+12 x-0.1 x^{2}+0.0005 x^{3}
$$

Find the marginal cost of producing 200 units.
Solution: The marginal cost of producing 200 units is $C^{\prime}(200)$, where

$$
C^{\prime}(x)=12-0.2 x+0.0015 x^{2}
$$

so

$$
C^{\prime}(200)=12-0.2(200)+0.0015(200)^{2}=32
$$

10) One side of a tringle has a fixed length of 5 cm and the base y is increasing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. The angle t is increasing at the rate of $0.2 \mathrm{rad} / \mathrm{min}$. How fast is the length of side c changing when $y=5$ and $t=\pi / 6$?

Solution: The law of cosines applied to this problem gives the equation:

$$
c^{2}=5^{2}+y^{2}-2 \cdot 5 y \cos t
$$

Note that in this case, t and y are variables, so we need to use the product rule to differentiate:

$$
2 c c^{\prime}=0+2 y y^{\prime}-10\left(y^{\prime} \cos t-y \sin t\right)
$$

so

$$
c^{\prime}=\frac{y y^{\prime}-5 y^{\prime} \cos t+5 y t^{\prime} \sin t}{c}
$$

where

$$
y^{\prime}=3 \mathrm{~cm} / \mathrm{min}, \quad t^{\prime}=0.2 \mathrm{rad} / \mathrm{min}, \quad y=5, \quad \text { and } \quad t=\pi / 6
$$

Then

$$
\cos t=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}=0.866 \quad \text { and } \quad \sin t=\sin \frac{\pi}{6}=0.5
$$

and, again using the law of cosines, we compute c as:

$$
c=\sqrt{5^{2}+5^{2}-2 \cdot 5 \cdot 5 \cdot 0.866}=2.588
$$

so

$$
c^{\prime}=\frac{5 \cdot 3-5 \cdot 3 \cdot 0.866+5 \cdot 5 \cdot 0.2 \cdot 0.5}{2.588}=1.742 \mathrm{~cm} / \mathrm{min}
$$

Formulas:

Volume of a sphere $\quad V=\frac{4}{3} \pi r^{3}$
Volume of a cylinder $\quad V=\pi r^{2} h$
Volume of a cone $\quad V=\frac{1}{3} \pi r^{2} h$
Surface area of a sphere $A=4 \pi r^{2}$
Hyperbolic functions $\quad \sinh x=\frac{e^{x}-e^{-x}}{2} \quad \cosh x=\frac{e^{x}+e^{-x}}{2}$
Pythagorean theorem $\quad c^{2}=a^{2}+b^{2}$
Law of cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

