MA125 Exam 1 Version 1

Name:

1) Use the definition of the derivative as a limit of a difference quotient to find the derivative of the following function:

$$
f(x)=\frac{1}{x^{2}}
$$

(Do not use any formulas for a derivative such as of a power of x or others)

Solution. By definition,

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{1}{x^{2}}-\frac{1}{a^{2}}}{x-a}
$$

Using the formula

$$
\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}
$$

we get

$$
\begin{gathered}
=\lim _{x \rightarrow a} \frac{\frac{a^{2}-x^{2}}{x^{2} a^{2}}}{x-a}=\lim _{x \rightarrow a} \frac{a^{2}-x^{2}}{x^{2} a^{2}(x-a)}=\lim _{x \rightarrow a}-\frac{x^{2}-a^{2}}{x^{2} a^{2}(x-a)} \\
=\lim _{x \rightarrow a}-\frac{(x-a)(x+a)}{x^{2} a^{2}(x-a)}=\lim _{x \rightarrow a}-\frac{x+a}{x^{2} a^{2}}
\end{gathered}
$$

by direct substitution, the limit is

$$
-\frac{2 a}{a^{4}}=\frac{-2}{a^{3}}
$$

(which agrees with the result of $n x^{n-1}$ for $n=-2$). Alternatively, this could have been written as

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}
$$

Again using the formula for a difference of two fractions, we get we get

$$
=\lim _{h \rightarrow 0} \frac{\frac{x^{2}-(x+h)^{2}}{(x+h)^{2} x^{2}}}{h}=\lim _{x \rightarrow a} \frac{x^{2}-x^{2}-2 x h-h^{2}}{h(x+h)^{2} x^{2}}=\lim _{h \rightarrow 0}-\frac{-2 x h-h^{2}}{h(x+h)^{2} x^{2}}
$$

If $h \neq 0$, we can cancel the common factors of h in the numerator and denominator to get

$$
\lim _{h \rightarrow 0}-\frac{-2 x-h}{(x+h)^{2} x^{2}}
$$

and by direct substitution the limit is

$$
\frac{-2 x}{x^{4}}=\frac{-2}{x^{3}}
$$

2) Find the equation of the line tangent to the graph of

$$
f(x)=-x^{2}+2 x+4
$$

at $x=2$.
Solution. The equation of the tangent line at $x=2$ is:

$$
y-f(2)=f^{\prime}(2)(x-2)
$$

Using the differentiation formulas, the derivative is
$f^{\prime}(x)=-2 x+2$ so $f^{\prime}(2)=-2(2)+2=-2$ and $f(2)=-2^{2}+2 \cdot 2+4=4$
so the tangent line is

$$
y-4=-2(x-2) \quad \text { or } \quad y=-2 x+8
$$

3) An object is dropped from the top of the CN tower in Toronto. The position of the object t seconds after release is given by

$$
f(t)=1815-16 t^{2}
$$

Determine the value of a for which the instantaneous velocity $v_{\text {inst }}(t)$ at time $t=a$ is the same as the average velocity $v_{\text {avg }}(t)$ from time $t=0$ to time $t=a$.

Solution. The average velocity from $t=0$ to $t=a$ is the difference quotient

$$
\frac{f(a)-f(0)}{a-0}=\frac{\left(1815-16 a^{2}\right)-\left(1815-16 \cdot 0^{2}\right)}{a-0}=\frac{-16 a^{2}}{a}=-16 a
$$

The instantaneous velocity at $t=a$ is $f^{\prime}(a)$. By the differentiation formulas, $f^{\prime}(x)=-32 x$ so $f^{\prime}(a)=-32 a$. Equating the instantaneous and average velocities, we get

$$
-16 a=-32 a \quad \text { or } \quad 0=-16 a \quad \text { so } \quad a=0
$$

That is, the instantaneous and average velocities are only equal at the time of release.
4) Suppose $g(x)$ satisfies the following inequalities for all $x \in \mathbb{R}$:

$$
\frac{\sqrt{x+6}-x}{x^{3}-3 x^{2}} \leq g(x) \leq \frac{x^{2}-11 x+24}{c x^{3}(x-3)}
$$

Find the value of c that will allow us to apply the squeeze theorem, then apply it to find $\lim _{x \rightarrow 3} g(x)$

Solution. In order for the squeeze theorem to work, the limits of the leftmost and rightmost expressions as $x \rightarrow 3$ must be the same. On the left, the limit is

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-x}{x^{3}-3 x^{2}}=\lim _{x \rightarrow 3} \frac{\sqrt{x+6}-x}{x^{3}-3 x^{2}}\left(\frac{\sqrt{x+6}+x}{\sqrt{x+6}+x}\right) \\
=\lim _{x \rightarrow 3} \frac{x+6-x^{2}}{x^{2}(x-3)}=\lim _{x \rightarrow 3}-\frac{(x-3)(x+2)}{x^{2}(x-3)(\sqrt{x+6}+x)}=\lim _{x \rightarrow 3}-\frac{(x+2)}{x^{2}(\sqrt{x+6}+x)}
\end{gathered}
$$

by direct substitution, this is $-5 / 54$. The right hand limit is

$$
\lim _{x \rightarrow 3} \frac{x^{2}-11 x+24}{c x^{3}(x-3)}=\lim _{x \rightarrow 3} \frac{(x-3)(x-8)}{c x^{3}(x-3)}=\lim _{x \rightarrow 3} \frac{x-8}{c x^{3}}
$$

Again by direct substitution this is $-5 / 27 c$. Equating the results, we have

$$
-\frac{5}{54}=-\frac{5}{27 c} \quad \text { so } \quad c=2
$$

5) At a temperature of $15^{\circ} \mathrm{C}$ the volume V of one mole of carbon dioxide is related to its pressure P by the formula

$$
V=\frac{1}{P}
$$

Find the average rate of change of the volume V per unit change in pressure when the pressure varies over the interval from 0.5 to 1 , and the instantaneous rate of change of volume per unit change in pressure when the pressure is 1 .

Solution. The average rate of change of volume from $P=0.5$ to $P=1$ is the difference quotient

$$
\frac{V(1)-V(.5)}{1-.5}=\frac{\frac{1}{1}-\frac{1}{.5}}{1-.5}=\frac{1-2}{.5}=-2
$$

The instantaneous rate of change at $P=1$ is the derivative

$$
V^{\prime}(P)=\frac{d}{d P} \frac{1}{P}=\frac{d}{d P} P^{-1}=-P^{-2}=-\frac{1}{P^{2}}=-\frac{1}{1^{2}}=-1
$$

6) Suppose C is a positive constant. Determine whether the following limit exists. If it exists, find its value.

$$
\lim _{x \rightarrow-\infty}\left(3+\sqrt{x^{2}+C}-\sqrt{x^{2}-C}\right)
$$

Solution. Write the limit as

$$
\lim _{x \rightarrow i n f t y} 3+\lim _{x \rightarrow i n f t y}\left(\sqrt{x^{2}+C}-\sqrt{x^{2}-C}\right)
$$

and use the conjugate to simplify

$$
\begin{gathered}
=3+\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+C}-\sqrt{x^{2}-C}\right)\left(\frac{\sqrt{x^{2}+C}+\sqrt{x^{2}-C}}{\sqrt{x^{2}+C}+\sqrt{x^{2}-C}}\right) \\
=3+\lim _{x \rightarrow-\infty} \frac{2 C}{\sqrt{x^{2}+C}+\sqrt{x^{2}-C}}
\end{gathered}
$$

Since $\sqrt{x} \rightarrow \infty$ as $x \rightarrow \infty$, the denominator becomes large without bound as $x \rightarrow \infty$ but the numerator is constant, so the limit of the fraction as $x \rightarrow \infty$ is zero, and the final result is

$$
\lim _{x \rightarrow-\infty}\left(3+\sqrt{x^{2}+C}-\sqrt{x^{2}-C}\right)=3
$$

7 Suppose c is a positive constant. For what values of c does the Intermediate Value Theorem guarantee that

$$
f(x)=x^{3}-c
$$

assumes a value of zero somewhere in the interior of the interval $[0,1]$?

Solution. The function is continuous on $[0,1]$, so the Intermediate Value Theorem states that it will assume every value in the interval $(f(0), f(1))$, or in this case $(-c, 1-c)$. So the theorem guarantees a root as long as this interval contains zero, which it will as long as

$$
-c<0 \quad \text { and } \quad 1-c>0
$$

The first inequality holds when $c>0$, and second when $c<1$, so the values of c that satisfy both inequalities are

$$
0<c<1
$$

Any value of c in this range guarantees a root in the interval $(0,1)$.

8 A function $f(x)$ is defined piecewise by the following rule of assignment, where b is a positive constant:

$$
f(x)=\left\{\begin{array}{cll}
\frac{1-x^{2}}{4 x+4} & \text { when } & x<-1 \\
\frac{x^{2}}{x(x-1)} & \text { when }-1 \leq x<1 \\
(x-1)^{2} & \text { when } 1 \leq x<2 \\
1+b^{x-2} & \text { when } x \geq 2
\end{array}\right.
$$

Which of the following statements are true and which are false?

T	$\lim _{x \rightarrow-1^{-}} f(x)$ exists
T	$\lim _{x \rightarrow-1^{+}} f(x) \quad$ exists
T	$f(x)$ is continuous at $x=-1$
T	$f(x)$ is continuous from the right at $x=-1$
T	$\lim _{x \rightarrow 0} f(x)$ exists
	$f(x)$ is continuous at $x=0$
	$f(x)$ is continuous from the right at $x=0$
	$\lim _{x \rightarrow 1^{-}} f(x)$ exists
T	$\lim _{x \rightarrow 1^{+}} f(x)$ exists
T	$f(x)$ is continuous from the right at $x=1$
T	$\lim _{x \rightarrow 2^{-}} f(x)$ exists
T	$\lim _{x \rightarrow 2^{+}} f(x) \quad$ exists
	$\lim _{x \rightarrow 2} f(x)$ exists
	$f(x)$ is continuous from the left at $x=2$
T	$f(x)$ is continuous from the right at $x=2$
T	$f(x)$ is continuous at $x=3$

The first part of the function, for $x<-1$, is

$$
f_{1}(x)=\frac{1-x^{2}}{4 x+4}=\frac{(1-x)(1+x)}{4(1+x)}=\frac{1-x}{4} \text { except at } x=-1
$$

So

$$
\lim _{x \rightarrow-1^{-}} f_{1}(x)=\lim _{x \rightarrow-1^{-}} \frac{1-x}{4}=\frac{1}{2}
$$

by direct substitution. The second part of the function, for $-1 \leq x<1$, is

$$
f_{2}(x)=\frac{x^{2}}{x(x-1)}=\frac{x}{x-1} \text { except at } x=0
$$

So

$$
\lim _{x \rightarrow-1^{+}} f_{2}(x)=\lim _{x \rightarrow-1^{+}} \frac{x}{1-x}=\frac{1}{2}=f_{2}(-1)
$$

by direct substitution. Since the left and right hand limits exist at $x=-1$, the two-sided limit exits. The function value exists, and the function value matches the limits, so f is continuous at $x=-1$. Recall that a function is continuous at a point if and only if it is both left and right continuous there, so f is also right continuous at $x=-1$.

The limit of

$$
\frac{x}{x-1}
$$

as $x \rightarrow 0$ is zero, and since f_{2} equals this function everywhere except zero, the limit of f_{2} is also zero, so

$$
\lim _{x \rightarrow 0} f(x) \quad \text { exists }
$$

However, f_{2} is not defined at zero, so the function is neither continuous nor right continuous at $x=0$.

