MA125 Exam 1

Name:

1) The position at time ¢ of a particle moving along a straight line is

given by
fO=t+at+2

where a is a constant chosen to make the particle’s average velocity
from ¢t =1 to ¢t = 3 equal to 5. :

a) What is the value of a?

b) What is the instantaneous velocity at ¢ = 1?
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2) A function f(z) is defined by - ::_;: Sfh =2

f(z) = —5
Find the set of real numbers on which the INVERSE of f is contin-
uous.
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3) Let
tanz

f(x):m

Describe the set of all values (if any exist) for which f(z) is continuous.
Briefly explain how you determined your answer.
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4) Use the mtermedlate valule theorém to prove that the equation
1f D= V24+z+1—-vzl—z+1=0

has at least one real root. You should include a justification that the
conditions under which the theorem applies are satisfied.
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5) A function is defined piecewise by:
k if z=0
Flz) if z+#0
If f has the property that

s < 0 < (5

o \/_) z € [-1,1],

determine the value of k£ that makes f continuous at z = 0.
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6) Determine whether the following limit exists. If it exists, find its

value.
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7 A function f is defined piecewise by:

2 < —1
flz)=1% aln(z®+z+1)+bd -1l<z<1
3 =8

For what values of a and b is f continuous on [—5, 5]?
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8 A function f(z) is defined piecewise by the following rule of assign-

ment:

f(z)

Which of the following statements are true?

2—x when < -2
= (2 —2?)/(z? 1) when —2<z<
CcoS T when = >0

I, o~ flo) ‘exists
lim, ,_o+ f(z) exists

lim,_, o f(z) exists

f(z) is continuous from the left at z = —2
f(z) is continuous from the right at z = —2
f(z) is continuous at z = —2

lim, , ;- f(z) exists

lim, , ;+ f(z) exists

lim,,_; f(z) exists

f(z) is continuous at z = —1

f(z) is continuous from the left at z =0

f(z) is continuous from the right at z =0

f(z) is continuous everywhere except — 1 and 0
f(z) is continuous at z = 7/2

f(z) is continuous on the interval [7/2, co)

f(z) is continuous on the interval{oo, —1.5]
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