MA125 Exam 1

Name:

1) The position at time t of a particle moving along a straight line is given by

$$f(t) = t^2 + at + 2$$

where a is a constant chosen to make the particle's average velocity from t = 1 to t = 3 equal to 5.

- a) What is the value of a?
- b) What is the instantaneous velocity at t = 1?

$$V_{avg} = \frac{f(3) - f(1)}{3 - 1} = \frac{(3^2 + 3a + 2) - (1^2 + a + 2)}{2} = \frac{8 + 2a}{2} - 4 + a$$

$$4 + a = 5 \quad a = 1$$

$$V_{inst} = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} = \frac{(1 + h)^2 + 1(1 + h) + 2 - (1^2 + 1 + 2)}{h}$$

$$V_{inst} = 3$$

$$V_{inst} = 3$$

$$V_{inst} = 3 + h$$

2) A function
$$f(x)$$
 is defined by
$$f(x) = e^{(x+2)} - 5$$

Find the set of real numbers on which the **INVERSE** of f is continuous.

$$f(x) = \frac{\tan x}{\sqrt{4 - x^2}}$$

Describe the set of all values (if any exist) for which f(x) is continuous. Briefly explain how you determined your answer.

tan X is continuous on its domain, which is all real numbers except
$$\{\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots\}$$

(1.e., tan $x = \frac{5\pi x}{\cos x}$, any and $\{-\frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \dots\}$

value for which $\cos x = 0$ must be excluded

(4-x² is continuous on $[-2, 2]$ (where $4-x^2 \ge 0 \Rightarrow x^2 \le 4$)

The domain of $\{-\frac{\pi}{2}, \frac{\pi}{2}\}$ of excluding $\{-\frac{\pi}{2}, \frac{\pi}{2}\}$ of the intermediate value theorem to prove that the equation $\{-\frac{\pi}{2}, \frac{\pi}{2}\}$ Use the intermediate value theorem to prove that the equation

has at least one real root. You should include a justification that the conditions under which the theorem applies are satisfied.

$$f(A) = \sqrt{(-1)^2 - (-1) + 1}$$

$$= \sqrt{1 - 1 + 1} - \sqrt{(-1)^2 - (-1) + 1}$$

$$= \sqrt{1 - 1 + 1} - \sqrt{1 + 1 + 1} = 1 - \sqrt{3} < 0$$

$$F(I) = \sqrt{1^2 + 1 + 1} - \sqrt{1^2 - 1 + 1} = \sqrt{3} - 1 > 0$$

$$Since f is continuous on [-1, 1], and [-1, 1], and$$

5) A function is defined piecewise by:

$$\begin{cases} k & \text{if } x = 0 \\ f(x) & \text{if } x \neq 0 \end{cases}$$

If f has the property that

$$\frac{x^2}{\sqrt{x^2 + 4} - 2} \le f(x) \le 2\sqrt{2} \left(\frac{2 - x}{\sqrt{2} - \sqrt{x}}\right) \qquad x \in [-1, 1],$$

determine the value of k that makes f continuous at x = 0.

for
$$f$$
 to be continuous at $x=0$, $\lim_{x \to 0} f(x) = f(0)$
 $\lim_{x \to 0} \frac{\chi^2}{\sqrt{x^2+4}-2} = \lim_{x \to 0} \frac{\chi^2}{(\sqrt{x^2+4}+2)} = \lim_{x \to 0} \frac{\chi^2(\sqrt{x^2+4}+2)}{\chi^2+4-4}$

$$\lim_{x \to 0} 2\sqrt{x} \left(\frac{z-x}{\sqrt{z-4x}}\right) = 2\sqrt{z} \left(\frac{z}{\sqrt{x}}\right) = 4$$

$$= \lim_{x \to 0} \sqrt{x^2+4+2} = 4 \left(\frac{2\ln x}{\ln x^2+4+2}\right) = 4 \left(\frac{2\ln x}{\ln x^2+4+2}\right)$$

Lim
$$2\sqrt{z}\left(\frac{z-y}{\sqrt{z-\sqrt{x}}}\right) = 2\sqrt{z}\left(\frac{z}{\sqrt{z}}\right) = 4$$

X70 By direct substitution.

By the squeeze theorem,
$$\lim_{x \to 0} \frac{x^2}{\sqrt{x^2+4}-2} \le \lim_{x \to 0} f(x) \le \lim_{x \to 0} 2\sqrt{z} \left(\frac{2-x}{\sqrt{z}-\sqrt{x}}\right)$$
Since $\lim_{x \to 0} f(x) = 4$, $f(0)$ must $\lim_{x \to 0} \frac{x^2}{\sqrt{x^2+4}-2} \le \lim_{x \to 0} f(x) \le \lim_{x \to 0} 2\sqrt{z} \left(\frac{2-x}{\sqrt{z}-\sqrt{x}}\right)$

 $4 \le L_{im} f(x) \le 4$ **6)** Determine whether the following limit exists. If it exists, find its value.

$$\lim_{x \to 1} \ln \left(\frac{2x^2 + x + 3}{2x^2 - x - 1} \right)$$

=
$$\lim_{x \to 1} \int_{\eta} \left(\frac{2x^2 + x + 3}{(2x + 1)(x - 1)} \right)$$

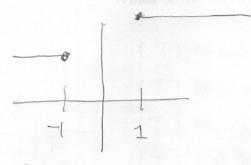
The quantity in parenthesis soo as X->1.

The Limit boes not exist.

7 A function f is defined piecewise by:

$$f(x) = \begin{cases} 2 & x \le -1 \\ a \ln(x^2 + x + 1) + b & -1 < x < 1 \\ 3 & x \ge 1 \end{cases}$$

For what values of a and b is f continuous on [-5, 5]?



For
$$f$$
 to be continuous of on $[-5,5]$, we need!

Lim $f(x) = 2$ and $\lim_{x \to -1^+} f(x) = 3$

a h(x+x+1)+b is continuous for all x. By direct substitution

$$\begin{array}{lll}
\text{Lim } f(x) = & a \ln(1^2 - 1 + 1) + b = 2 & \text{Lim } f(x) = a \ln(1^2 + 1 + 1) + 2 = 3 \\
\text{X-9-1+} & = & a \ln 1 + b = 2 & \text{X-9-1-} \\
& a \cdot 0 + b = 2 & a \ln 3 + 2 = 3 \\
& b = 2 & a \cdot 0 = 3
\end{array}$$

$$\lim_{x \to 1^{-}} f(x) = a \ln(1^{2} + 1 + 1) + 2 = 3$$

$$a \ln 3 + 2 = 3$$

$$a \ln 3 + 2 = 3$$
 $a \ln 3 = 1$

(OVER)

$$f(x) = \begin{cases} 2 & x \leq -1 \\ \frac{\ln(x^2 + x + 1)}{\ln 3} + 2 & -1 \leq x \leq 1 \\ 3 & x \geq 1 \end{cases}$$

8 A function f(x) is defined piecewise by the following rule of assignment:

$$f(x) = \begin{cases} 2 - x & when & x \le -2 \\ (x^4 - x^2)/(x^2 - 1) & when & -2 < x < 0 \\ \cos x & when & x \ge 0 \end{cases}$$

Which of the following statements are true?

$$()$$
 $\lim_{x \to -2^+} f(x)$ exists

$$()$$
 $\lim_{x \to -2} f(x)$ exists

$$(1)$$
 $f(x)$ is continuous from the right at $x = -2$

(
$$\uparrow$$
) $f(x)$ is continuous at $x = -2$

$$(\top)$$
 $\lim_{x\to -1^+} f(x)$ exists

$$() \lim_{x \to -1} f(x)$$
 exists

(
$$\digamma$$
) $f(x)$ is continuous at $x = -1$

$$() f(x)$$
 is continuous from the left at $x = 0$

$$(\mathcal{T})$$
 $f(x)$ is continuous everywhere except -1 and 0

(
$$\mathcal{T}$$
) $f(x)$ is continuous at $x = \pi/2$

(
$$\int$$
) $f(x)$ is continuous on the interval $[\pi/2, \infty)$

(
$$\uparrow$$
) $f(x)$ is continuous on the interval $(\infty, -1.5]$

$$\frac{(x^{4}-x^{2})}{x^{2}-1} = \frac{x^{2}(x^{2}-1)}{(x^{2}-1)} = \frac{y^{2}(x+1)(x-1)}{(x+1)(x-1)} = x^{2} \quad \text{if } x \neq \pm 1$$