MA125 Exam 1

Name:

1) A function f(x) is defined by

$$f(x) = \frac{x+2}{2x-5}$$

Find the set of real numbers on which the **INVERSE** of f is continuous (i.e., find $\{a: f^{-1}(x) \text{ is continuous at } x=a\}$).

$$y = \frac{x+2}{2x-5}$$

$$y(2x-5) = x+2$$

$$y(2x-5) =$$

$$f(t) = \frac{2t+5}{4t+1}$$

what is the particle's average velocity from t = 0 to t = 0.5?

$$V_{avg} = \frac{f(0.5) - f(0)}{.5 - 0} = \frac{2(.5) + 5}{4(.5) + 1} - \frac{2(0) + 5}{4(0) + 1} = \frac{6 - 5}{3 \cdot 1} = \frac{-3}{.5} = -6$$

3) Let

$$f(x) = \frac{\ln(x^2 + 6)}{x^2 - 16}$$

Describe the set of all values (if any exist) for which f(x) is continuous on the interval [-10, 10].

Ln X is continuous on its domein, {x: x>0} = (0,00) X26 is positive for any X, so The numerator 15 continuous for all real x X2-16 = 0 when X = ±4, so The rational functions 15 continuous Everywhere except x= ±4. On [=10,10], f is continuous everywhere except ±4, or on [10,4) v (-4,4) v (4,4) 4) Use the intermediate value theorem to prove that the equation

$$e^x - e^{-x} = 2$$

has at least one real root. You should include a justification that the conditions under which the theorem applies are satisfied

5) A function f(x) has the following property:

$$\frac{x^2 - 6x}{x^2 - 10x + 24} \le f(x) \le \frac{x}{8 - x} \qquad x \in [5, 7]$$

Find $x \to 6$, if it can be found using this information.

$$\frac{\chi^{2}-6\chi}{\chi^{2}-10\chi+2\dot{u}} = \frac{\chi(\chi-6)}{(\chi-4)} = \frac{\chi}{\chi+4} \quad \text{when} \quad \chi+6, \quad \text{so} \quad \lim_{\chi\to 6} \frac{\chi^{2}-6\chi}{\chi^{2}-10\chi+2\dot{u}} = \lim_{\chi\to 6} \frac{\chi}{\chi+4} = \frac{\chi}{\chi+6} =$$

6) Suppose

$$f(x) = \sqrt{x}$$
 and $g(x) = \frac{f(x) - f(3)}{x - 3}$

Find $\lim_{x\to 3} g(x)$ if the limit exists.

$$g(x) = \frac{f(x) - f(3)}{x - 3} = \frac{\sqrt{x} - \sqrt{3}}{x - 3} = \frac{\sqrt{x} - \sqrt{3}}{\sqrt{x} + \sqrt{3}} = \frac{x - 3}{(x - 3)(\sqrt{x} + \sqrt{3})}$$

$$= \frac{1}{\sqrt{x} + \sqrt{3}} \text{ if } x \neq 3$$
By direct substitution, $\lim_{x \to 3} \{ \sqrt{x} + \sqrt{3} \} = \frac{1}{\sqrt{3} + \sqrt{3}} = \frac{1}{2\sqrt{3}}$

7 A function f is defined piecewise by:

$$f(x) = \begin{cases} 2 & x < 0 \\ ab^x & 0 \le x \le 2 \\ \frac{2}{9} & x > 2 \end{cases}$$

For what values of a and b is f continuous on $(-\infty, \infty)$?

If f is continuous or $(-\infty,\infty)$, f is continuous at x=0, which means $(-\infty,\infty)$, f is continuous at f(x)=0, which means f(x)=0, f(x)=0, f(x)=0, f(x)=0, f(x)=0,

Suce Lim = 2, f(0)=2

is to find ab givent it passes Through (0,2) and (2,2/9)

$$f(a) = ab^{0} = a \cdot 1 = 2$$
 so $a = 1$
 $f(a) = ab^{2} = \frac{2}{9}$ so $b^{2} = \frac{1}{9}$ and $b = \frac{1}{3}$.

(OVER)

8 A function f(x) is defined piecewise by the following rule of assignment:

$$f(x) = \begin{cases} 0 & when & x \le 0 \\ e^{x-1} - 1 & when & 0 < x < 1 \\ \ln x & when & x \ge 1 \end{cases}$$

Which of the following statements are true?

- (\bigcap) $\lim_{x\to 0^-} f(x)$ exists
- $() \lim_{x \to 0^+} f(x)$ exists
- (\uparrow) f(x) is continuous from the left at x = 0
- (\sqsubset) f(x) is continuous from the right at x = 0
- (\vdash) f(x) is continuous at x = 0
- () $\lim_{x \to 1^-} f(x)$ exists
- (\top) $\lim_{x\to 1} f(x)$ exists
- (\mathcal{T}) f(x) is continuous from the left at x = 1
- f(x) is continuous from the right at x = 1
- () f(x) is continuous at x = 1
- (f(x) is continuous at x = -2
- (\uparrow) f(x) is continuous on the interval $(-\infty, -2]$
- (\bigcap) f(x) is continuous on the interval $[\frac{1}{2}, \infty)$
- (\vdash) f(x) is continuous on the interval [-1,1]

