MA125 Exam 1
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1) A function f(z) is defined by
z+2
He) =ge—s

Find the set of real numbers on which the INVERSE of f is continuous
(ie., find {a : f~'(z) is continuous at z =a }).
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2) A particle is moving along a stra.lght. line and its position at time ¢

is given by . (QUQV“JmLLﬁ €K (.ef’f' §)

=g

what is the particle’s average velocity from ¢t = 0 to t = 0.57
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3) Let )
_In(z* +6)
f(@) = z? - 16

Describe the set of all values (if any exist) for which f(x) is continuous
on the interval [—10, 10].
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4) Use the intermediate value theorem to prove that the equation
e€—e =2

has at least one real root. You should include a justification that the
l conditions under which the theorem applies are satisfied.
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5) A function f(z) has the following property: Ghm‘;a -

z? — 6z T Lz)"‘]

Zotpra = [0 g =eb)
Find x — 6, if it can be found using this information.
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6) Suppose

f(z) - F(3)

f@)=vE and g(@) = Z

Find lim,_3 g(z) if the limit exists.
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7 A function f is defined piccewise by:

2 el
f(z) =4 ab® 0Lz <2

2
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For what values of @ and b is f continuous on (—0c0,00)?
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8 A function f(z) is defined piecewise by the following rule of assign-
ment:

0 when <0
f@)={ e 1'—1 when 0<2z<1
Inz when z >1

Which of the following statements are true?

( }_h) lim, ,o- f(x) exists

(7— ) limg_o+ f(z) exists

( F ) limg_o f(z) exists

(T) f(x) is continuous from the left at z = 0

( F ) f(z) is continuous from the right at z = 0
( F ) f(z) is continuous at z = 0

(T ) limg g~ f(x) exists

(T) limg_y+ f(z) exists

("T) limg f(z) exists

(7]7) f(z) is continuous from the left at x = 1
(")) f(z) is continuous from the right at z = 1
( | ) f(z) is continuous at z =1

( T) f(z) is continuous at z = —2

(7" ) f(z) is continuous on the interval (—oo, —2]
( T) f(x) is continuous on the interval [1, co)

( F ) f(z) is continuous on the interval [—1,1]




