Powers

A powers or exponents are a kind of shorthand notation for a number multiplied by itself.

Powers

A powers or exponents are a kind of shorthand notation for a number multiplied by itself.
In the expression 2^{3} the number 2 is called the base and 3 is called the power or exponent

Powers

A powers or exponents are a kind of shorthand notation for a number multiplied by itself.
In the expression 2^{3} the number 2 is called the base and 3 is called the power or exponent
2^{3} is shorthand notation for $2 \times 2 \times 2=8$
The calculator sequence is: $2, x^{y}, 3$

Powers

A powers or exponents are a kind of shorthand notation for a number multiplied by itself.
In the expression 2^{3} the number 2 is called the base and 3 is called the power or exponent

2^{3} is shorthand notation for $2 \times 2 \times 2=8$

The calculator sequence is: $2, x^{y}, 3$
4^{5} is shorthand notation for $4 \times 4 \times 4 \times 4 \times 4=1024$
The calculator sequence is: $4, x^{y}, 5$

Powers

A powers or exponents are a kind of shorthand notation for a number multiplied by itself.
In the expression 2^{3} the number 2 is called the base and 3 is called the power or exponent

2^{3} is shorthand notation for $2 \times 2 \times 2=8$

The calculator sequence is: $2, x^{y}, 3$
4^{5} is shorthand notation for $4 \times 4 \times 4 \times 4 \times 4=1024$
The calculator sequence is: $4, x^{y}, 5$
10^{3} is shorthand notation for $10 \times 10 \times 10=1000$
The calculator sequence is: $10, x^{y}, 3$

Special Rules for Powers

The number 1 has the property that it stays the same when you multiply it by itself.

Special Rules for Powers

The number 1 has the property that it stays the same when you multiply it by itself.

This means that the number 1 raised to any power is 1 :

$$
\begin{aligned}
& 1^{2}=1 \times 1=1 \quad 1^{3}=1 \times 1 \times 1=1 \quad 1^{4}=1 \times 1 \times 1 \times 1=1 \\
& 1^{5}=1 \times 1 \times 1 \times 1 \times 1=1 \quad 1^{6}=1 \times 1 \times 1 \times 1 \times 1 \times 1=1 \\
& \text { and so on. }
\end{aligned}
$$

Special Rules for Powers

The number 1 has the property that it stays the same when you multiply it by itself.

This means that the number 1 raised to any power is 1 :

$$
\begin{aligned}
& 1^{2}=1 \times 1=1 \quad 1^{3}=1 \times 1 \times 1=1 \quad 1^{4}=1 \times 1 \times 1 \times 1=1 \\
& 1^{5}=1 \times 1 \times 1 \times 1 \times 1=1 \quad 1^{6}=1 \times 1 \times 1 \times 1 \times 1 \times 1=1
\end{aligned}
$$

and so on.
In fact, for any number n,

$$
1^{n}=1
$$

Special Rules for Powers

Any number raised to the first power is that number:

$$
3^{1}=3 \quad 4^{1}=4 \quad 10^{1}=10 \quad 8^{1}=8
$$

and so on.

Special Rules for Powers

Any number raised to the first power is that number:

$$
3^{1}=3 \quad 4^{1}=4 \quad 10^{1}=10 \quad 8^{1}=8
$$

and so on.
Any number raised to the zero power is one:

$$
3^{0}=1 \quad 4^{0}=4 \quad 10^{0}=1 \quad 8^{0}=1
$$

and so on.

Special Rules for Powers

The previous rules can be understood by the following consideration: Reducing the exponent by 1 divides the result by the base:

$$
3^{4}=81=\frac{243}{3}=\frac{3^{5}}{3}
$$

Special Rules for Powers

The previous rules can be understood by the following consideration: Reducing the exponent by 1 divides the result by the base:

$$
\begin{aligned}
& 3^{4}=81=\frac{243}{3}=\frac{3^{5}}{3} \\
& 3^{3}=27=\frac{81}{3}=\frac{3^{4}}{3}
\end{aligned}
$$

Special Rules for Powers

The previous rules can be understood by the following consideration: Reducing the exponent by 1 divides the result by the base:

$$
\begin{aligned}
& 3^{4}=81=\frac{243}{3}=\frac{3^{5}}{3} \\
& 3^{3}=27=\frac{81}{3}=\frac{3^{4}}{3} \\
& 3^{2}=9=\frac{27}{3}=\frac{3^{3}}{3}
\end{aligned}
$$

Special Rules for Powers

Continuing the same pattern, reducing the exponent by 1 and dividing by the base suggests that

$$
3^{1}=\frac{3^{2}}{3}=\frac{9}{3}=3
$$

Special Rules for Powers

Continuing the same pattern, reducing the exponent by 1 and dividing by the base suggests that

$$
3^{1}=\frac{3^{2}}{3}=\frac{9}{3}=3
$$

We can continue the process as long as we like:

$$
3^{0}=\frac{3^{1}}{3}=\frac{3}{3}=1
$$

Special Rules for Powers

Continuing the same pattern, reducing the exponent by 1 and dividing by the base suggests that

$$
3^{1}=\frac{3^{2}}{3}=\frac{9}{3}=3
$$

We can continue the process as long as we like:

$$
3^{0}=\frac{3^{1}}{3}=\frac{3}{3}=1
$$

In fact we can go further still:

$$
3^{-1}=\frac{3^{0}}{3}=\frac{1}{3}=0.3333333 \ldots
$$

Negative Exponents

and

$$
3^{-2}=\frac{3^{-1}}{3}=\frac{\frac{1}{3}}{3}=\frac{1}{9}=\frac{1}{3^{2}}
$$

Negative Exponents

and

$$
3^{-2}=\frac{3^{-1}}{3}=\frac{\frac{1}{3}}{3}=\frac{1}{9}=\frac{1}{3^{2}}
$$

To enter an expression with a negative exponent on the calculator, say 3^{-2}, the sequence is:
$3 \quad x^{y} \quad 2+/-=$
which should produce the result 0.1111111 .

Negative Exponents

and

$$
3^{-2}=\frac{3^{-1}}{3}=\frac{\frac{1}{3}}{3}=\frac{1}{9}=\frac{1}{3^{2}}
$$

To enter an expression with a negative exponent on the calculator, say 3^{-2}, the sequence is:
$3 \quad x^{y} \quad 2+/-=$
which should produce the result 0.1111111 .
Note that this is the same as if we had entered
$1 \div 9$

Negative Exponents

and

$$
3^{-2}=\frac{3^{-1}}{3}=\frac{\frac{1}{3}}{3}=\frac{1}{9}=\frac{1}{3^{2}}
$$

To enter an expression with a negative exponent on the calculator, say 3^{-2}, the sequence is:
$3 \quad x^{y} \quad 2 \quad+/-=$
which should produce the result 0.1111111 .
Note that this is the same as if we had entered
$1 \div 9$
This is because

$$
3^{-2}=\frac{1}{3^{2}}
$$

Negative Exponents

To calculate 3^{-3}, the sequence is
$3 \quad x^{y} 3+/-=$
which should produce the result 0.037037037

Negative Exponents

To calculate 3^{-3}, the sequence is
$3 \quad x^{y} 3+/-=$
which should produce the result 0.037037037
Note that this is the same as if we had entered
$1 \div 27$

Negative Exponents

To calculate 3^{-3}, the sequence is
$3 \quad x^{y} 3+/-=$
which should produce the result 0.037037037
Note that this is the same as if we had entered
$1 \div 27$
This is because

$$
3^{-3}=\frac{1}{3^{3}}=\frac{1}{27}
$$

Examples

Find the value of:
7^{3}

Examples

Find the value of:

$$
7^{3}
$$

Solution:

$$
7^{3}=7 \times 7 \times 7=343
$$

Calculator key sequence:
$7 x^{y} 3=$
Spreadsheet formula:

$$
=7^{\wedge} 3
$$

Examples

Find the value of:
10^{4}

Examples

Find the value of:

$$
10^{4}
$$

Solution:

$$
10^{4}=10 \times 10 \times 10 \times 10=10000
$$

Calculator key sequence:
$10 x^{y} \quad 4=$
Spreadsheet formula:

$$
=10^{\wedge} 4
$$

Examples

Find the value of:
2^{10}

Examples

Find the value of:

$$
2^{10}
$$

Solution:

$$
2^{10}=1024
$$

Calculator key sequence:
$2 x^{y} \quad 10=$
Spreadsheet formula:

$$
=2^{\wedge} 10
$$

Examples

Find the value of:

Examples

Find the value of:

$$
3^{5}
$$

Solution:

$$
3^{5}=243
$$

Calculator key sequence:
$3 x^{y} 5=$
Spreadsheet formula:

$$
=3^{\wedge} 5
$$

Examples

Find the value of:

$$
5^{-2}
$$

Examples

Find the value of:

$$
5^{-2}
$$

Solution:

$$
5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}=0.04
$$

Calculator key sequence:
$5 \quad x^{y} \quad 2 \quad+/-=$
Spreadsheet formula:

$$
=5^{\wedge}-2
$$

Examples

Find the value of:

Examples

Find the value of:

10^{8}

Solution:

$$
10^{8}=100000000=100,000,000
$$

(one hundred million)
Calculator key sequence:
$10 x^{y} \quad 8=$
Spreadsheet formula:

$$
=10^{\wedge} 8
$$

Examples

Find the value of:
10^{9}

Examples

Find the value of:

$$
10^{9}
$$

Solution:

$$
10^{9}=1000000000=1,000,000,000
$$

(one billion)
Calculator key sequence:
$10 x^{y} 9=$
Spreadsheet formula:

$$
=10^{\wedge} 9
$$

Examples

Find the value of:
10^{10}

Examples

Find the value of:

$$
10^{10}
$$

Solution:

$$
10^{10}=10000000000=10,000,000,000
$$

(ten billion)
Calculator key sequence:
$10 \quad x^{y} \quad 10=$ Answer displays as: $1 .{ }^{10}$
Spreadsheet formula:

$$
=10^{\wedge} 10
$$

Note that the calculator switched to scientific notation.

